Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative
For $k, r\in {\rm \bf N}$, $k<r$; $q\ge 1$, $p>0$; $\alpha, \beta>0$ and for functions $x\in L_{\infty}^r({\rm\bf R})$ inequalities that estimate the norm $\|x_{\pm }^{(k)}\|_{L_q[a,b]}$ on an arbitrary segment $[a,b] \subset {\rm\bf R}$ such that $\;x^{(k)}(a)=x^{(k)}(b)=0$ via a local no...
Saved in:
Main Author: | V.A. Kofanov |
---|---|
Format: | Article |
Language: | English |
Published: |
Oles Honchar Dnipro National University
2024-12-01
|
Series: | Researches in Mathematics |
Subjects: | |
Online Access: | https://vestnmath.dnu.dp.ua/index.php/rim/article/view/434/434 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics
by: V.F. Babenko, et al.
Published: (2024-12-01) -
A Class of Potentials in Weighted Hardy-Type Inequalities with a Finite Number of Poles
by: Anna Canale, et al.
Published: (2024-12-01) -
Limit cycles in a Kolmogorov-type model
by: Xun-Cheng Huang
Published: (1990-01-01) -
SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions
by: Eric Reinhardt, et al.
Published: (2025-01-01) -
On the non existence of periodic orbits for a class of two dimensional Kolmogorov systems
by: Rachid Boukoucha
Published: (2021-11-01)