Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration
To enhance the performance of combustors in micro thermophotovoltaic systems, this study employs numerical simulations to investigate a planar microscale combustor featuring a counter-flow flame configuration. The analysis begins with an evaluation of the effects of (1) equivalence ratio <i>Φ&...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/18/1/195 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841549225163227136 |
---|---|
author | Liaoliao Li Yuze Sun Xinyu Huang Lixian Guo Xinyu Zhao |
author_facet | Liaoliao Li Yuze Sun Xinyu Huang Lixian Guo Xinyu Zhao |
author_sort | Liaoliao Li |
collection | DOAJ |
description | To enhance the performance of combustors in micro thermophotovoltaic systems, this study employs numerical simulations to investigate a planar microscale combustor featuring a counter-flow flame configuration. The analysis begins with an evaluation of the effects of (1) equivalence ratio <i>Φ</i> and (2) inlet flow rate <i>V<sub>i</sub></i> on key thermal and combustion parameters, including the average temperature of the combustor main wall (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>), wall temperature non-uniformity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>) and radiation efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>). The findings indicate that increasing <i>Φ</i> causes these parameters to initially increase and subsequently decrease. Similarly, increasing the inlet flow rate leads to a monotonic decline in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>, while the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> exhibit a rise-then-fall trend. A comparative study between the proposed combustor and a conventional planar combustor reveals that, under identical inlet flow rate and equivalence ratio conditions, the use of the counterflow flame configuration can increase the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> while reducing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>. The Nusselt number analysis shows that the counter-flow flame configuration micro-combustor achieves a larger area with positive Nusselt numbers and higher average Nusselt numbers, which highlights improved heat transfer from the fluid to the solid. Furthermore, the comparison of blow-off limits shows that the combustor with counter-flow flame configuration exhibits superior flame stability and a broader flammability range. Overall, this study provides a preliminary investigation into the use of counter-flow flame configurations in microscale combustors. |
format | Article |
id | doaj-art-a7f787cfdc124f7599f44eb40da2c013 |
institution | Kabale University |
issn | 1996-1073 |
language | English |
publishDate | 2025-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj-art-a7f787cfdc124f7599f44eb40da2c0132025-01-10T13:17:22ZengMDPI AGEnergies1996-10732025-01-0118119510.3390/en18010195Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame ConfigurationLiaoliao Li0Yuze Sun1Xinyu Huang2Lixian Guo3Xinyu Zhao4School of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, ChinaSchool of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, ChinaSchool of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, ChinaDepartment of Mechanical Engineering, University of Canterbury, Christchurch 8041, New ZealandDepartment of Mechanical Engineering, University of Canterbury, Christchurch 8041, New ZealandTo enhance the performance of combustors in micro thermophotovoltaic systems, this study employs numerical simulations to investigate a planar microscale combustor featuring a counter-flow flame configuration. The analysis begins with an evaluation of the effects of (1) equivalence ratio <i>Φ</i> and (2) inlet flow rate <i>V<sub>i</sub></i> on key thermal and combustion parameters, including the average temperature of the combustor main wall (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>), wall temperature non-uniformity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>) and radiation efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>). The findings indicate that increasing <i>Φ</i> causes these parameters to initially increase and subsequently decrease. Similarly, increasing the inlet flow rate leads to a monotonic decline in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>, while the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> exhibit a rise-then-fall trend. A comparative study between the proposed combustor and a conventional planar combustor reveals that, under identical inlet flow rate and equivalence ratio conditions, the use of the counterflow flame configuration can increase the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> while reducing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>. The Nusselt number analysis shows that the counter-flow flame configuration micro-combustor achieves a larger area with positive Nusselt numbers and higher average Nusselt numbers, which highlights improved heat transfer from the fluid to the solid. Furthermore, the comparison of blow-off limits shows that the combustor with counter-flow flame configuration exhibits superior flame stability and a broader flammability range. Overall, this study provides a preliminary investigation into the use of counter-flow flame configurations in microscale combustors.https://www.mdpi.com/1996-1073/18/1/195micro planar combustorcounter-flow flamethermal performanceheat transferenergy conversion |
spellingShingle | Liaoliao Li Yuze Sun Xinyu Huang Lixian Guo Xinyu Zhao Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration Energies micro planar combustor counter-flow flame thermal performance heat transfer energy conversion |
title | Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration |
title_full | Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration |
title_fullStr | Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration |
title_full_unstemmed | Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration |
title_short | Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration |
title_sort | enhancing thermal performance investigations of a methane fueled planar micro combustor with a counter flow flame configuration |
topic | micro planar combustor counter-flow flame thermal performance heat transfer energy conversion |
url | https://www.mdpi.com/1996-1073/18/1/195 |
work_keys_str_mv | AT liaoliaoli enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration AT yuzesun enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration AT xinyuhuang enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration AT lixianguo enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration AT xinyuzhao enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration |