Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration

To enhance the performance of combustors in micro thermophotovoltaic systems, this study employs numerical simulations to investigate a planar microscale combustor featuring a counter-flow flame configuration. The analysis begins with an evaluation of the effects of (1) equivalence ratio <i>Φ&...

Full description

Saved in:
Bibliographic Details
Main Authors: Liaoliao Li, Yuze Sun, Xinyu Huang, Lixian Guo, Xinyu Zhao
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/1/195
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549225163227136
author Liaoliao Li
Yuze Sun
Xinyu Huang
Lixian Guo
Xinyu Zhao
author_facet Liaoliao Li
Yuze Sun
Xinyu Huang
Lixian Guo
Xinyu Zhao
author_sort Liaoliao Li
collection DOAJ
description To enhance the performance of combustors in micro thermophotovoltaic systems, this study employs numerical simulations to investigate a planar microscale combustor featuring a counter-flow flame configuration. The analysis begins with an evaluation of the effects of (1) equivalence ratio <i>Φ</i> and (2) inlet flow rate <i>V<sub>i</sub></i> on key thermal and combustion parameters, including the average temperature of the combustor main wall (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>), wall temperature non-uniformity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>) and radiation efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>). The findings indicate that increasing <i>Φ</i> causes these parameters to initially increase and subsequently decrease. Similarly, increasing the inlet flow rate leads to a monotonic decline in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>, while the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> exhibit a rise-then-fall trend. A comparative study between the proposed combustor and a conventional planar combustor reveals that, under identical inlet flow rate and equivalence ratio conditions, the use of the counterflow flame configuration can increase the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> while reducing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>. The Nusselt number analysis shows that the counter-flow flame configuration micro-combustor achieves a larger area with positive Nusselt numbers and higher average Nusselt numbers, which highlights improved heat transfer from the fluid to the solid. Furthermore, the comparison of blow-off limits shows that the combustor with counter-flow flame configuration exhibits superior flame stability and a broader flammability range. Overall, this study provides a preliminary investigation into the use of counter-flow flame configurations in microscale combustors.
format Article
id doaj-art-a7f787cfdc124f7599f44eb40da2c013
institution Kabale University
issn 1996-1073
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj-art-a7f787cfdc124f7599f44eb40da2c0132025-01-10T13:17:22ZengMDPI AGEnergies1996-10732025-01-0118119510.3390/en18010195Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame ConfigurationLiaoliao Li0Yuze Sun1Xinyu Huang2Lixian Guo3Xinyu Zhao4School of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, ChinaSchool of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, ChinaSchool of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, ChinaDepartment of Mechanical Engineering, University of Canterbury, Christchurch 8041, New ZealandDepartment of Mechanical Engineering, University of Canterbury, Christchurch 8041, New ZealandTo enhance the performance of combustors in micro thermophotovoltaic systems, this study employs numerical simulations to investigate a planar microscale combustor featuring a counter-flow flame configuration. The analysis begins with an evaluation of the effects of (1) equivalence ratio <i>Φ</i> and (2) inlet flow rate <i>V<sub>i</sub></i> on key thermal and combustion parameters, including the average temperature of the combustor main wall (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>), wall temperature non-uniformity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>) and radiation efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>). The findings indicate that increasing <i>Φ</i> causes these parameters to initially increase and subsequently decrease. Similarly, increasing the inlet flow rate leads to a monotonic decline in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>, while the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> exhibit a rise-then-fall trend. A comparative study between the proposed combustor and a conventional planar combustor reveals that, under identical inlet flow rate and equivalence ratio conditions, the use of the counterflow flame configuration can increase the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>T</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula> while reducing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>R</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>T</mi><mi>w</mi></mrow></msub></mrow></semantics></math></inline-formula>. The Nusselt number analysis shows that the counter-flow flame configuration micro-combustor achieves a larger area with positive Nusselt numbers and higher average Nusselt numbers, which highlights improved heat transfer from the fluid to the solid. Furthermore, the comparison of blow-off limits shows that the combustor with counter-flow flame configuration exhibits superior flame stability and a broader flammability range. Overall, this study provides a preliminary investigation into the use of counter-flow flame configurations in microscale combustors.https://www.mdpi.com/1996-1073/18/1/195micro planar combustorcounter-flow flamethermal performanceheat transferenergy conversion
spellingShingle Liaoliao Li
Yuze Sun
Xinyu Huang
Lixian Guo
Xinyu Zhao
Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration
Energies
micro planar combustor
counter-flow flame
thermal performance
heat transfer
energy conversion
title Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration
title_full Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration
title_fullStr Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration
title_full_unstemmed Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration
title_short Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration
title_sort enhancing thermal performance investigations of a methane fueled planar micro combustor with a counter flow flame configuration
topic micro planar combustor
counter-flow flame
thermal performance
heat transfer
energy conversion
url https://www.mdpi.com/1996-1073/18/1/195
work_keys_str_mv AT liaoliaoli enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration
AT yuzesun enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration
AT xinyuhuang enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration
AT lixianguo enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration
AT xinyuzhao enhancingthermalperformanceinvestigationsofamethanefueledplanarmicrocombustorwithacounterflowflameconfiguration