BUILDING 3D STRUCTURE MODELS OF ELECTROACTIVE MODIFIED MICROCRYSTALLINE CELLULOSE BY THE DEBYE METHOD
In this paper, we carried out the XRD results and 3D structural models of short-range order of amorphous cellulose obtained by ball milling of microcrystalline cellulose. The amorphous cellulose has the well-reproducible effect of influence of ozone treatment on its proton conductivity, which allows...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | Russian |
| Published: |
North-Caucasus Federal University
2022-09-01
|
| Series: | Наука. Инновации. Технологии |
| Subjects: | |
| Online Access: | https://scienceit.elpub.ru/jour/article/view/348 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we carried out the XRD results and 3D structural models of short-range order of amorphous cellulose obtained by ball milling of microcrystalline cellulose. The amorphous cellulose has the well-reproducible effect of influence of ozone treatment on its proton conductivity, which allows to use this material as a gas sensor. Calculation of the quantitative characteristics of the short-range order (radii of coordination spheres and their dispersions, coordination numbers) of amorphous cellulose was carried out from distribution pair functions curve by using the Finback-Warren method. The space atoms configurations was carried out by Debye method. After that, the models were distorted by converting into packages disoriented relative to each other layers. The X-Ray diffraction patterns were calculated for 3D models and compared with experimental curves. |
|---|---|
| ISSN: | 2308-4758 |