The GCD property and irreduciable quadratic polynomials

The proof of the following theorem is presented: If D is, respectively, a Krull domain, a Dedekind domain, or a Prüfer domain, then D is correspondingly a UFD, a PID, or a Bezout domain if and only if every irreducible quadratic polynomial in D[X] is a prime element.

Saved in:
Bibliographic Details
Main Authors: Saroj Malik, Joe L. Mott, Muhammad Zafrullah
Format: Article
Language:English
Published: Wiley 1986-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171286000893
Tags: Add Tag
No Tags, Be the first to tag this record!