Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire

Wheat head detection is essential in estimating the important characteristics of wheat. However, detecting wheat heads in images from different domains has been challenging due to variations in domain features and environmental conditions. This research aims to improve the robustness of wheat head d...

Full description

Saved in:
Bibliographic Details
Main Authors: Sylvester C. Okafor, Linjing Wei, Solomon Boamah, Le Zhang, Mamadou B. Diallo
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Canadian Journal of Remote Sensing
Online Access:http://dx.doi.org/10.1080/07038992.2024.2367479
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846095189626585088
author Sylvester C. Okafor
Linjing Wei
Solomon Boamah
Le Zhang
Mamadou B. Diallo
author_facet Sylvester C. Okafor
Linjing Wei
Solomon Boamah
Le Zhang
Mamadou B. Diallo
author_sort Sylvester C. Okafor
collection DOAJ
description Wheat head detection is essential in estimating the important characteristics of wheat. However, detecting wheat heads in images from different domains has been challenging due to variations in domain features and environmental conditions. This research aims to improve the robustness of wheat head detection in wheat images. A combination of Fourier domain adaptation (FDA), adaptive alpha beta gamma correction (AABG) and random guided filter (RGF) preprocessing methods was applied in this study. The authors utilized FDA to reduce variations between different domains by transforming an image into the Fourier domain, aligning its distribution with a randomly selected image of another domain. AABG adjusts image properties based on local statistics of the image patches, and RGF, a technique for edge-aware image filtering, was used as augmentation. An EfficientDet model was trained on the publicly available wheat dataset and the results were analyzed and compared to a baseline model. The FDA + RGF approach achieved an improved mean average precision (mAP) of 0.6534 compared to the baseline mAP of 0.6292. Our study can contribute to advancing wheat head detection techniques in agriculture, addressing factors like variations in wheat head appearance by focusing on improving domain variation through data dependent approaches.
format Article
id doaj-art-a5db1ad37b3b42a1b24693b0609bbbe4
institution Kabale University
issn 1712-7971
language English
publishDate 2024-12-01
publisher Taylor & Francis Group
record_format Article
series Canadian Journal of Remote Sensing
spelling doaj-art-a5db1ad37b3b42a1b24693b0609bbbe42025-01-02T11:34:20ZengTaylor & Francis GroupCanadian Journal of Remote Sensing1712-79712024-12-0150110.1080/07038992.2024.23674792367479Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoireSylvester C. Okafor0Linjing Wei1Solomon Boamah2Le Zhang3Mamadou B. Diallo4College of Information Science and Technology, Gansu Agricultural UniversityCollege of Information Science and Technology, Gansu Agricultural UniversityCollege of Plant Protection, Gansu Agricultural UniversityCollege of Information Science and Technology, Gansu Agricultural UniversityCollege of Information Science and Technology, Gansu Agricultural UniversityWheat head detection is essential in estimating the important characteristics of wheat. However, detecting wheat heads in images from different domains has been challenging due to variations in domain features and environmental conditions. This research aims to improve the robustness of wheat head detection in wheat images. A combination of Fourier domain adaptation (FDA), adaptive alpha beta gamma correction (AABG) and random guided filter (RGF) preprocessing methods was applied in this study. The authors utilized FDA to reduce variations between different domains by transforming an image into the Fourier domain, aligning its distribution with a randomly selected image of another domain. AABG adjusts image properties based on local statistics of the image patches, and RGF, a technique for edge-aware image filtering, was used as augmentation. An EfficientDet model was trained on the publicly available wheat dataset and the results were analyzed and compared to a baseline model. The FDA + RGF approach achieved an improved mean average precision (mAP) of 0.6534 compared to the baseline mAP of 0.6292. Our study can contribute to advancing wheat head detection techniques in agriculture, addressing factors like variations in wheat head appearance by focusing on improving domain variation through data dependent approaches.http://dx.doi.org/10.1080/07038992.2024.2367479
spellingShingle Sylvester C. Okafor
Linjing Wei
Solomon Boamah
Le Zhang
Mamadou B. Diallo
Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire
Canadian Journal of Remote Sensing
title Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire
title_full Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire
title_fullStr Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire
title_full_unstemmed Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire
title_short Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire
title_sort enhanced wheat head detection in images using fourier domain adaptation and random guided filter detection amelioree des tetes de ble dans les images a l aide de l adaptation du domaine fourier et du filtre guide aleatoire
url http://dx.doi.org/10.1080/07038992.2024.2367479
work_keys_str_mv AT sylvestercokafor enhancedwheatheaddetectioninimagesusingfourierdomainadaptationandrandomguidedfilterdetectionamelioreedestetesdebledanslesimagesalaidedeladaptationdudomainefourieretdufiltreguidealeatoire
AT linjingwei enhancedwheatheaddetectioninimagesusingfourierdomainadaptationandrandomguidedfilterdetectionamelioreedestetesdebledanslesimagesalaidedeladaptationdudomainefourieretdufiltreguidealeatoire
AT solomonboamah enhancedwheatheaddetectioninimagesusingfourierdomainadaptationandrandomguidedfilterdetectionamelioreedestetesdebledanslesimagesalaidedeladaptationdudomainefourieretdufiltreguidealeatoire
AT lezhang enhancedwheatheaddetectioninimagesusingfourierdomainadaptationandrandomguidedfilterdetectionamelioreedestetesdebledanslesimagesalaidedeladaptationdudomainefourieretdufiltreguidealeatoire
AT mamadoubdiallo enhancedwheatheaddetectioninimagesusingfourierdomainadaptationandrandomguidedfilterdetectionamelioreedestetesdebledanslesimagesalaidedeladaptationdudomainefourieretdufiltreguidealeatoire