Natural multi-active nanoparticles integrated biological hydrogel microcarriers for wound healing

Abstract Bioactive substance-integrated hydrogels have demonstrated efficacy in diabetic wound treatment. However, challenges remain in identifying naturally derived, multifunctional active substances capable of addressing the complex pathophysiology of wounds, as well as in tailoring hydrogels to e...

Full description

Saved in:
Bibliographic Details
Main Authors: Junyi Che, Danqing Huang, Yang Wang, Guangtao Gao, Yuanjin Zhao
Format: Article
Language:English
Published: BMC 2025-08-01
Series:Journal of Nanobiotechnology
Subjects:
Online Access:https://doi.org/10.1186/s12951-025-03666-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Bioactive substance-integrated hydrogels have demonstrated efficacy in diabetic wound treatment. However, challenges remain in identifying naturally derived, multifunctional active substances capable of addressing the complex pathophysiology of wounds, as well as in tailoring hydrogels to enhance their suitability for wound applications. Here, we present a novel biological hydrogel microcarrier system by integrating Bletilla striata-derived nanoparticles (PdNPs) and polydopamine nanozymes (PDAs) into a hyaluronic acid-methacrylate (HAMA) hydrogel. PdNPs can polarize over-activated macrophages to an anti-inflammatory phenotype and restore fibroblast functionality. Meanwhile, PDAs act as potent reactive oxygen species (ROS) scavengers and protect fibroblasts from oxidative stress-induced apoptosis. When encapsulated into HAMA microcarriers, the PdNP + PDA@HAMA microcarriers significantly accelerate wound healing in a diabetic rat model. These outcomes demonstrate the therapeutic potential of our natural, multifunctional hydrogel microcarriers as a promising wound dressing platform for the treatment of chronic diabetic wounds.
ISSN:1477-3155