Influence of Post-Weld Heat Treatment on the Mechanical Properties and Microstructure of a Seamless Pipe of an ASTM A335 Gr P91 Steel
This study investigates the effects of different post-weld heat treatments (PWHT) on the mechanical properties and microstructure of ASTM 335 Gr P91 martensitic steel, commonly used in boiler applications. Mechanical tests were conducted at room temperature, 300°C, and 600°C. Two PWHT conditions wer...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol)
2025-03-01
|
| Series: | Materials Research |
| Subjects: | |
| Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392025000100222&tlng=en |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigates the effects of different post-weld heat treatments (PWHT) on the mechanical properties and microstructure of ASTM 335 Gr P91 martensitic steel, commonly used in boiler applications. Mechanical tests were conducted at room temperature, 300°C, and 600°C. Two PWHT conditions were applied: (i) PWHT-1, involving a 300°C isothermal treatment followed by heating to 770°C, and (ii) PWHT-2, following the same profile but without cooling to room temperature after the initial isothermal step. The resulting microstructure exhibited martensitic features, with a gradient of prior austenite grain boundaries in the heat-affected zone (HAZ) and δ-ferrite formation in the fusion zone (FZ), reducing toughness. Ultimate tensile strength decreased with increasing temperature, ranging from 675–750 MPa (RT), 525–615 MPa (300°C), and 375–440 MPa (600°C). Elongation was highest at 600°C (BM: 25–30%, FZ: 8–20%), decreasing at room temperature (BM: 20–25%, FZ: 2–12%). Toughness tests showed crack propagation across BM, HAZ, and FZ, with the lowest energy absorption in FZ (0.05–0.4 mm, 12–50 J). At 600°C, toughness decreased in BM and HAZ but increased in FZ, suggesting a change in deformation mechanisms at elevated temperatures. |
|---|---|
| ISSN: | 1516-1439 |