LED-pumped room-temperature solid-state maser
Abstract Room-temperature MASERs (Microwave Amplification by Stimulated Emission of Radiation) amplify electromagnetic waves at microwave frequencies with minimal noise. We demonstrate a cost-effective LED-pumped maser using pentacene-doped para-terphenyl as the gain medium. Here, we show that LED l...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Communications Engineering |
| Online Access: | https://doi.org/10.1038/s44172-025-00455-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Room-temperature MASERs (Microwave Amplification by Stimulated Emission of Radiation) amplify electromagnetic waves at microwave frequencies with minimal noise. We demonstrate a cost-effective LED-pumped maser using pentacene-doped para-terphenyl as the gain medium. Here, we show that LED light, which is brightness-enhanced and guided via a cerium-doped yttrium aluminium garnet luminescent concentrator, achieves persistent maser emission at 1.45 GHz with a duration of 200 µs and a microwave output power of 0.014 mW, surpassing previous non-laser pumped systems. Operating at low voltage, the LED-pumped maser ensures safety, reduced costs, and simple integration. Potential applications include sensitive magnetic resonance imaging, portable atomic clocks, quantum technologies, and enhanced deep-space radio astronomy. |
|---|---|
| ISSN: | 2731-3395 |