EIF4A3 enhances the viability, invasion and osteogenic differentiation of BMSCs via the USP53/SMAD5 pathway
Abstract SMAD5 has been demonstrated to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through the circ_0001825/miR-1270/SMAD5 axis or KCNQ1OT1/miR-320a/SMAD5 axis. Therefore, SMAD5 may be a key regulator of BMSCs osteogenic differentiation, and its more related mol...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-06-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-86048-1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!