Aqueous Synthesis of Sub-11 nm Fe-Cu Oxides and Alloy Nanostructures: Structural and Morphological studies

Fe and Cu oxides and Fe-Cu alloy nanostructures (FeCuNS) were obtained using a facile chemical reduction of different mass ratios of FeCl2∙4H2O and CuCl2∙2H2O with NaBH4 in an aqueous solution, under nitrogen atmosphere. FeCuNS were prepared in three different Fe:Cu ratios: 75:25, 50:50, and 25:75 w...

Full description

Saved in:
Bibliographic Details
Main Authors: Raquel Zuñiga-Lechuga, Alfredo Vilchis-Nestor, Raúl Morales-Luckie, Victor Sanchez-Mendieta
Format: Article
Language:English
Published: Iranian Chemical Society 2023-10-01
Series:Nanochemistry Research
Subjects:
Online Access:http://www.nanochemres.org/article_179399_78ee3f068931e429279169b7401a6c1d.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fe and Cu oxides and Fe-Cu alloy nanostructures (FeCuNS) were obtained using a facile chemical reduction of different mass ratios of FeCl2∙4H2O and CuCl2∙2H2O with NaBH4 in an aqueous solution, under nitrogen atmosphere. FeCuNS were prepared in three different Fe:Cu ratios: 75:25, 50:50, and 25:75 wt. %, by an aqueous reduction. FeCuNS were characterized by Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and High-Resolution TEM (HRTEM), and their textural properties were determined using nitrogen physisorption. Synthesized FeCuNS sizes ranged from 2.2 to 11 nm, having an irregular quasi-spherical morphology. The main phases in these nanostructures, as determined by XRD, are Fe2O3, Fe3O4 and CuFe2O4; the main peak obtained at 2θ = 43.33° confirmed the formation of the nanoalloy Fe-Cu, as FeCu4 (JCPDS No.065-7002) in the 50:50 and 25:75 wt.% FeCuNS samples, which can be indexed as a face-centered cubic structure (FCC). An XPS study performed on these nanostructures allowed for confirming the formation of the FeCu4 alloy, alongside other metallic oxide main phases.
ISSN:2538-4279
2423-818X