Habitat suitability modeling of loggerhead sea turtles in the Central-Eastern Mediterranean Sea: a machine learning approach using satellite tracking data

Understanding how sea turtle species move through the environment and respond to environmental features is fundamental for sustainable ecosystem management and effective conservation. This study investigates the habitat suitability of the loggerhead sea turtle (Caretta caretta) in the Adriatic and N...

Full description

Saved in:
Bibliographic Details
Main Authors: Rosalia Maglietta, Rocco Caccioppoli, Daniele Piazzolla, Leonardo Saccotelli, Carla Cherubini, Elena Scagnoli, Viviana Piermattei, Marco Marcelli, Giuseppe Andrea De Lucia, Rita Lecci, Salvatore Causio, Giovanni Dimauro, Francesco De Franco, Matteo Scuro, Giovanni Coppini
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-11-01
Series:Frontiers in Marine Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmars.2024.1493598/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846163363928735744
author Rosalia Maglietta
Rosalia Maglietta
Rocco Caccioppoli
Daniele Piazzolla
Leonardo Saccotelli
Carla Cherubini
Carla Cherubini
Carla Cherubini
Elena Scagnoli
Viviana Piermattei
Marco Marcelli
Marco Marcelli
Giuseppe Andrea De Lucia
Rita Lecci
Salvatore Causio
Giovanni Dimauro
Francesco De Franco
Matteo Scuro
Giovanni Coppini
author_facet Rosalia Maglietta
Rosalia Maglietta
Rocco Caccioppoli
Daniele Piazzolla
Leonardo Saccotelli
Carla Cherubini
Carla Cherubini
Carla Cherubini
Elena Scagnoli
Viviana Piermattei
Marco Marcelli
Marco Marcelli
Giuseppe Andrea De Lucia
Rita Lecci
Salvatore Causio
Giovanni Dimauro
Francesco De Franco
Matteo Scuro
Giovanni Coppini
author_sort Rosalia Maglietta
collection DOAJ
description Understanding how sea turtle species move through the environment and respond to environmental features is fundamental for sustainable ecosystem management and effective conservation. This study investigates the habitat suitability of the loggerhead sea turtle (Caretta caretta) in the Adriatic and Northern Ionian Seas (Central-Eastern Mediterranean) by developing and validating a multidisciplinary framework that leverages machine learning to investigate movement patterns collected by satellite tags Argos satellite tags. Satellite tracking data, enriched with sixteen environmental variables from the Copernicus Marine Service and EMODnet-bathymetry, were analyzed using Random Forest models, obtaining an accuracy of 80.9% when classifying presence versus pseudo-absence of loggerhead sea turtles. As main findings, sea bottom depth, surface chlorophyll (chl-a), and mixed layer depth (MLD) were identified as the most influential features in the habitat suitability of these specimens. Moreover, statistically significant differences, evaluated using t-test statistics, were found between coastal and pelagic locations, for the different seasons, in mixed layer depth, chl-a, 3D-clorophyll, salinity and phosphate. Although based on a limited sample of tagged animals, this study demonstrates that the distribution patterns of loggerhead sea turtles in Mediterranean coastal and pelagic areas are primarily influenced by sea water features linked to productivity and, consequently, to potential prey abundance. Additionally, this multidisciplinary framework presents a replicable approach that can be adapted for various species and regions.
format Article
id doaj-art-9a88c9302c1940a8a578bf29aca9b942
institution Kabale University
issn 2296-7745
language English
publishDate 2024-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Marine Science
spelling doaj-art-9a88c9302c1940a8a578bf29aca9b9422024-11-19T10:01:41ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452024-11-011110.3389/fmars.2024.14935981493598Habitat suitability modeling of loggerhead sea turtles in the Central-Eastern Mediterranean Sea: a machine learning approach using satellite tracking dataRosalia Maglietta0Rosalia Maglietta1Rocco Caccioppoli2Daniele Piazzolla3Leonardo Saccotelli4Carla Cherubini5Carla Cherubini6Carla Cherubini7Elena Scagnoli8Viviana Piermattei9Marco Marcelli10Marco Marcelli11Giuseppe Andrea De Lucia12Rita Lecci13Salvatore Causio14Giovanni Dimauro15Francesco De Franco16Matteo Scuro17Giovanni Coppini18Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, STIIMA-CNR, Bari, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyInstitute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, STIIMA-CNR, Bari, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyDepartment of Informatics, University of Bari ‘Aldo Moro’, Bari, ItalyLaboratory of Experimental Oceanology end Marine Ecology, Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, Civitavecchia, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyLaboratory of Experimental Oceanology end Marine Ecology, Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, Civitavecchia, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyInstitute of Anthropic Impact and Sustainability in Marine Environment, National Research Council (IAS-CNR), Oristano, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyDepartment of Informatics, University of Bari ‘Aldo Moro’, Bari, ItalyConsorzio di gestione di Torre Guaceto, Brindisi, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce, ItalyUnderstanding how sea turtle species move through the environment and respond to environmental features is fundamental for sustainable ecosystem management and effective conservation. This study investigates the habitat suitability of the loggerhead sea turtle (Caretta caretta) in the Adriatic and Northern Ionian Seas (Central-Eastern Mediterranean) by developing and validating a multidisciplinary framework that leverages machine learning to investigate movement patterns collected by satellite tags Argos satellite tags. Satellite tracking data, enriched with sixteen environmental variables from the Copernicus Marine Service and EMODnet-bathymetry, were analyzed using Random Forest models, obtaining an accuracy of 80.9% when classifying presence versus pseudo-absence of loggerhead sea turtles. As main findings, sea bottom depth, surface chlorophyll (chl-a), and mixed layer depth (MLD) were identified as the most influential features in the habitat suitability of these specimens. Moreover, statistically significant differences, evaluated using t-test statistics, were found between coastal and pelagic locations, for the different seasons, in mixed layer depth, chl-a, 3D-clorophyll, salinity and phosphate. Although based on a limited sample of tagged animals, this study demonstrates that the distribution patterns of loggerhead sea turtles in Mediterranean coastal and pelagic areas are primarily influenced by sea water features linked to productivity and, consequently, to potential prey abundance. Additionally, this multidisciplinary framework presents a replicable approach that can be adapted for various species and regions.https://www.frontiersin.org/articles/10.3389/fmars.2024.1493598/fullmachine learningrandom forestsatellite tagArgos systemCopernicus marine service (CMS)Caretta caretta
spellingShingle Rosalia Maglietta
Rosalia Maglietta
Rocco Caccioppoli
Daniele Piazzolla
Leonardo Saccotelli
Carla Cherubini
Carla Cherubini
Carla Cherubini
Elena Scagnoli
Viviana Piermattei
Marco Marcelli
Marco Marcelli
Giuseppe Andrea De Lucia
Rita Lecci
Salvatore Causio
Giovanni Dimauro
Francesco De Franco
Matteo Scuro
Giovanni Coppini
Habitat suitability modeling of loggerhead sea turtles in the Central-Eastern Mediterranean Sea: a machine learning approach using satellite tracking data
Frontiers in Marine Science
machine learning
random forest
satellite tag
Argos system
Copernicus marine service (CMS)
Caretta caretta
title Habitat suitability modeling of loggerhead sea turtles in the Central-Eastern Mediterranean Sea: a machine learning approach using satellite tracking data
title_full Habitat suitability modeling of loggerhead sea turtles in the Central-Eastern Mediterranean Sea: a machine learning approach using satellite tracking data
title_fullStr Habitat suitability modeling of loggerhead sea turtles in the Central-Eastern Mediterranean Sea: a machine learning approach using satellite tracking data
title_full_unstemmed Habitat suitability modeling of loggerhead sea turtles in the Central-Eastern Mediterranean Sea: a machine learning approach using satellite tracking data
title_short Habitat suitability modeling of loggerhead sea turtles in the Central-Eastern Mediterranean Sea: a machine learning approach using satellite tracking data
title_sort habitat suitability modeling of loggerhead sea turtles in the central eastern mediterranean sea a machine learning approach using satellite tracking data
topic machine learning
random forest
satellite tag
Argos system
Copernicus marine service (CMS)
Caretta caretta
url https://www.frontiersin.org/articles/10.3389/fmars.2024.1493598/full
work_keys_str_mv AT rosaliamaglietta habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT rosaliamaglietta habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT roccocaccioppoli habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT danielepiazzolla habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT leonardosaccotelli habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT carlacherubini habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT carlacherubini habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT carlacherubini habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT elenascagnoli habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT vivianapiermattei habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT marcomarcelli habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT marcomarcelli habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT giuseppeandreadelucia habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT ritalecci habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT salvatorecausio habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT giovannidimauro habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT francescodefranco habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT matteoscuro habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata
AT giovannicoppini habitatsuitabilitymodelingofloggerheadseaturtlesinthecentraleasternmediterraneanseaamachinelearningapproachusingsatellitetrackingdata