A Lattice Boltzmann BGK Model with an Amending Function for Two-Dimensional Second-Order Nonlinear Partial Differential Equations
A mesoscopic lattice Boltzmann method based on the BGK model is proposed to solve a class of two-dimensional second-order nonlinear partial differential equations by incorporating an amending function. The model provides an efficient and stable framework for simulating initial value problems of seco...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Entropy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1099-4300/27/7/717 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A mesoscopic lattice Boltzmann method based on the BGK model is proposed to solve a class of two-dimensional second-order nonlinear partial differential equations by incorporating an amending function. The model provides an efficient and stable framework for simulating initial value problems of second-order nonlinear partial differential equations and is adaptable to various nonlinear systems, including strongly nonlinear cases. The numerical characteristics and evolution patterns of these nonlinear equations are systematically investigated. A D2Q4 lattice model is employed, and the kinetic moment constraints for both local equilibrium and correction distribution functions are derived in the four velocity directions. Explicit analytical expressions for these distribution functions are presented. The model is verified to recover the target macroscopic equations in the continuous limit via Chapman–Enskog analysis. Numerical experiments using exact solutions are performed to assess the model’s accuracy and stability. The results show excellent agreement with exact solutions and demonstrate the model’s robustness in capturing nonlinear dynamics. |
|---|---|
| ISSN: | 1099-4300 |