Adaptive Control for Multi-Agent Systems Governed by Fractional-Order Space-Varying Partial Integro-Differential Equations

This paper investigates a class of multi-agent systems (MASs) governed by nonlinear fractional-order space-varying partial integro-differential equations (SVPIDEs), which incorporate both nonlinear state terms and integro terms. Firstly, a distributed adaptive control protocol is developed for leade...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhen Liu, Yingying Wen, Bin Zhao, Chengdong Yang
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/112
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates a class of multi-agent systems (MASs) governed by nonlinear fractional-order space-varying partial integro-differential equations (SVPIDEs), which incorporate both nonlinear state terms and integro terms. Firstly, a distributed adaptive control protocol is developed for leaderless fractional-order SVPIDE-based MASs, aiming to achieve consensus among all agents without a leader. Then, for leader-following fractional-order SVPIDE-based MASs, the protocol is extended to account for communication between the leader and follower agents, ensuring that the followers reach consensus with the leader. Finally, three examples are presented to illustrate the effectiveness of the proposed distributed adaptive control protocols.
ISSN:2227-7390