Comparative analysis of chloroplast genomes and phylogenetic relationships of different pitaya cultivars

Abstract Background Pitaya is an important tropical fruit highly favoured by consumers owing to its good and juicy characteristics. It contains a large amount of betacyanin, which is a natural food-colouring agent, in the peel and pulp. However, few studies have focused on the pitaya chloroplast (cp...

Full description

Saved in:
Bibliographic Details
Main Authors: Enting Zheng, Gulbar Yisilam, Chuanning Li, Fangfang Jiao, Yulan Ling, Shuhua Lu, Qiuyan Wang, Xinmin Tian
Format: Article
Language:English
Published: BMC 2025-05-01
Series:BMC Genomics
Subjects:
Online Access:https://doi.org/10.1186/s12864-025-11581-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Pitaya is an important tropical fruit highly favoured by consumers owing to its good and juicy characteristics. It contains a large amount of betacyanin, which is a natural food-colouring agent, in the peel and pulp. However, few studies have focused on the pitaya chloroplast (cp) genomes. Results To explore the genetic differences and phylogenetic relationships among the cp genomes of the six pitaya cultivars, we assembled, annotated, and performed a comparative genomic analysis. The cp genomes of the six cultivars exhibited a typical circular structure, ranging in length from 133,146 to 133,617 bp, with a GC content of 36.4%. All individual cp genomes were annotated with 123 genes, including 80 protein-coding genes, 38 tRNA genes, four rRNA genes, and one pseudogene (ycf68). Six mutated hotspot regions (trnF-GAA-rbcL, trnM-CAU-accD, rpl20-psbB, accD, rpl22, ycf1) were detected, which could be considered potential molecular markers for population genetics and molecular phylogeny studies. Phylogenetic analysis showed that pitaya cultivars clustered into a single branch in the phylogenetic tree of the Cactaceae family. Furthermore, the observed phylogenetic patterns suggest a complex genetic basis for colour variation among pitaya cultivars. Conclusions The study findings expand our understanding of the cp genome of pitaya and the phylogenetic relationships among different cultivars. The genomic data obtained provide important information for the breeding and genetic improvement of pitaya.
ISSN:1471-2164