Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis
Patient loss to follow-up caused by centralised and expensive diagnostics that are reliant on sputum is a major obstacle in the fight to end tuberculosis. An affordable, non-sputum biomarker-based, point-of-care deployable test is needed to address this. Serum antibodies binding the mycobacterial ce...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Tropical Medicine and Infectious Disease |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2414-6366/9/11/269 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Patient loss to follow-up caused by centralised and expensive diagnostics that are reliant on sputum is a major obstacle in the fight to end tuberculosis. An affordable, non-sputum biomarker-based, point-of-care deployable test is needed to address this. Serum antibodies binding the mycobacterial cell wall lipids, mycolic acids, have shown promise as biomarkers for active tuberculosis. However, anti-lipid antibodies are of low affinity, making them difficult to detect in a lateral flow immunoassay—a technology widely deployed at the point-of-care. Previously, recombinant monoclonal anti-mycolate antibodies were developed and applied to characterise the antigenicity of mycolic acid. We now demonstrate that these anti-mycolate antibodies specifically detect hexane extracts of mycobacteria. Secondary antibody-mediated detection was applied to detect the displacement of the monoclonal mycolate antibodies by the anti-mycolic acid antibodies present in tuberculosis-positive guinea pig and human serum samples. These data establish proof-of-concept for a novel lateral flow immunoassay for tuberculosis provisionally named MALIA—mycolate antibody lateral flow immunoassay. |
|---|---|
| ISSN: | 2414-6366 |