Comparative Study of Activated Carbon and Silver Nanoparticle-Loaded Activated Carbon Derived from Tea Waste for Removal of Tetracycline from Aqueous Solution
The present work elucidates the utilization of activated carbon (AC) and activated carbon loaded with silver nanoparticles (AgNPs-AC) to remove tetracycline (TC) from synthetically polluted water. The activated carbon was prepared from tea residue and loaded with silver nanoparticles. Scanning elec...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Tikrit University
2025-05-01
|
| Series: | Tikrit Journal of Engineering Sciences |
| Subjects: | |
| Online Access: | https://tj-es.com/ojs/index.php/tjes/article/view/1890 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The present work elucidates the utilization of activated carbon (AC) and activated carbon loaded with silver nanoparticles (AgNPs-AC) to remove tetracycline (TC) from synthetically polluted water. The activated carbon was prepared from tea residue and loaded with silver nanoparticles. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) were used to characterize the activated carbon (AC) and silver nanoparticles-loaded activated carbon (AgNPs-AC). The impact of various parameters on the adsorption effectiveness of TC was examined. These variables were the initial adsorbate concentration (Co), solution acidity (pH), adsorption time (t), and dosage of the adsorbent. The maximum TC removal percentage was (88%) at pH = 9, time = 230 min, Co = 60 ppm, and dosage = 0.39 g/25 ml using AC as an adsorbent. Whereas the maximum TC removal percentage was (98%) at pH = 9, time = 46 min, Co = 60 ppm, and dosage = 0.0406 g/25 ml using AgNPs-AC. The isotherm models were also studied. It was found that the Langmuir isotherm model fitted well with the experimental data. The adsorption kinetics study showed that the pseudo-second-order accurately describes the experimental results. The analysis of the adsorption thermodynamics revealed that TC adsorption on TAC and AgNPs-AC was endothermic and spontaneous. The study aims to make activated carbon from tea waste and load silver nanoparticles on that activated carbon (AgNPs-AC). It also studies how two adsorbents (activated carbon and activated carbon loaded with silver nanoparticles) remove tetracycline from artificially polluted water. Then, the outcomes were compared.
|
|---|---|
| ISSN: | 1813-162X 2312-7589 |