Convex geometries yielded by transit functions
Let \(V\) be a finite nonempty set. A transit function is a map \(R:V\times V\rightarrow 2^V\) such that \(R(u,u)=\{u\}\), \(R(u,v)=R(v,u)\) and \(u\in R(u,v)\) holds for every \(u,v\in V\). A set \(K\subseteq V\) is \(R\)-convex if \(R(u,v)\subset K\) for every \(u,v\in K\) and all \(R\)-convex sub...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
AGH Univeristy of Science and Technology Press
2025-07-01
|
| Series: | Opuscula Mathematica |
| Subjects: | |
| Online Access: | https://www.opuscula.agh.edu.pl/vol45/4/art/opuscula_math_4520.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|