Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText

The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinform...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhaza Liebenlito, Arlianis Arum Yesinta, Muhamad Irvan Septiar Musti
Format: Article
Language:Indonesian
Published: Indonesian Society of Applied Science (ISAS) 2024-03-01
Series:Journal of Applied Computer Science and Technology
Subjects:
Online Access:https://journal.isas.or.id/index.php/JACOST/article/view/655
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849240226707275776
author Muhaza Liebenlito
Arlianis Arum Yesinta
Muhamad Irvan Septiar Musti
author_facet Muhaza Liebenlito
Arlianis Arum Yesinta
Muhamad Irvan Septiar Musti
author_sort Muhaza Liebenlito
collection DOAJ
description The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinformation regarding to news contents as known as fake news. Therefore, it is necessary to detect news titles that contain clickbait. This study aims to obtain an optimal clickbait news title classification model using FastText. To get the optimal model can be done by cleaning the data and optimizing the model's hyperparameters. The model was trained using 9600 training data collected from Indonesian online news. The best model obtained in this study has performance with an accuracy of 77% and an F1-Score of 69%.  
format Article
id doaj-art-88fec5e8c7074c1fbf9ff82bf6af1e83
institution Kabale University
issn 2723-1453
language Indonesian
publishDate 2024-03-01
publisher Indonesian Society of Applied Science (ISAS)
record_format Article
series Journal of Applied Computer Science and Technology
spelling doaj-art-88fec5e8c7074c1fbf9ff82bf6af1e832025-08-20T04:00:40ZindIndonesian Society of Applied Science (ISAS)Journal of Applied Computer Science and Technology2723-14532024-03-015110.52158/jacost.v5i1.655655Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastTextMuhaza Liebenlito0Arlianis Arum Yesinta1Muhamad Irvan Septiar Musti2UIN Syarif Hidayatullah JakartaUIN Syarif Hidayatullah JakartaUIN Syarif Hidayatullah Jakarta The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinformation regarding to news contents as known as fake news. Therefore, it is necessary to detect news titles that contain clickbait. This study aims to obtain an optimal clickbait news title classification model using FastText. To get the optimal model can be done by cleaning the data and optimizing the model's hyperparameters. The model was trained using 9600 training data collected from Indonesian online news. The best model obtained in this study has performance with an accuracy of 77% and an F1-Score of 69%.   https://journal.isas.or.id/index.php/JACOST/article/view/655FastText, klasifikasi teks, berita daring, clickbait
spellingShingle Muhaza Liebenlito
Arlianis Arum Yesinta
Muhamad Irvan Septiar Musti
Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText
Journal of Applied Computer Science and Technology
FastText, klasifikasi teks, berita daring, clickbait
title Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText
title_full Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText
title_fullStr Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText
title_full_unstemmed Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText
title_short Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText
title_sort deteksi clickbait pada judul berita online berbahasa indonesia menggunakan fasttext
topic FastText, klasifikasi teks, berita daring, clickbait
url https://journal.isas.or.id/index.php/JACOST/article/view/655
work_keys_str_mv AT muhazaliebenlito deteksiclickbaitpadajudulberitaonlineberbahasaindonesiamenggunakanfasttext
AT arlianisarumyesinta deteksiclickbaitpadajudulberitaonlineberbahasaindonesiamenggunakanfasttext
AT muhamadirvanseptiarmusti deteksiclickbaitpadajudulberitaonlineberbahasaindonesiamenggunakanfasttext