Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText
The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinform...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | Indonesian |
| Published: |
Indonesian Society of Applied Science (ISAS)
2024-03-01
|
| Series: | Journal of Applied Computer Science and Technology |
| Subjects: | |
| Online Access: | https://journal.isas.or.id/index.php/JACOST/article/view/655 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849240226707275776 |
|---|---|
| author | Muhaza Liebenlito Arlianis Arum Yesinta Muhamad Irvan Septiar Musti |
| author_facet | Muhaza Liebenlito Arlianis Arum Yesinta Muhamad Irvan Septiar Musti |
| author_sort | Muhaza Liebenlito |
| collection | DOAJ |
| description |
The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinformation regarding to news contents as known as fake news. Therefore, it is necessary to detect news titles that contain clickbait. This study aims to obtain an optimal clickbait news title classification model using FastText. To get the optimal model can be done by cleaning the data and optimizing the model's hyperparameters. The model was trained using 9600 training data collected from Indonesian online news. The best model obtained in this study has performance with an accuracy of 77% and an F1-Score of 69%.
|
| format | Article |
| id | doaj-art-88fec5e8c7074c1fbf9ff82bf6af1e83 |
| institution | Kabale University |
| issn | 2723-1453 |
| language | Indonesian |
| publishDate | 2024-03-01 |
| publisher | Indonesian Society of Applied Science (ISAS) |
| record_format | Article |
| series | Journal of Applied Computer Science and Technology |
| spelling | doaj-art-88fec5e8c7074c1fbf9ff82bf6af1e832025-08-20T04:00:40ZindIndonesian Society of Applied Science (ISAS)Journal of Applied Computer Science and Technology2723-14532024-03-015110.52158/jacost.v5i1.655655Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastTextMuhaza Liebenlito0Arlianis Arum Yesinta1Muhamad Irvan Septiar Musti2UIN Syarif Hidayatullah JakartaUIN Syarif Hidayatullah JakartaUIN Syarif Hidayatullah Jakarta The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinformation regarding to news contents as known as fake news. Therefore, it is necessary to detect news titles that contain clickbait. This study aims to obtain an optimal clickbait news title classification model using FastText. To get the optimal model can be done by cleaning the data and optimizing the model's hyperparameters. The model was trained using 9600 training data collected from Indonesian online news. The best model obtained in this study has performance with an accuracy of 77% and an F1-Score of 69%. https://journal.isas.or.id/index.php/JACOST/article/view/655FastText, klasifikasi teks, berita daring, clickbait |
| spellingShingle | Muhaza Liebenlito Arlianis Arum Yesinta Muhamad Irvan Septiar Musti Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText Journal of Applied Computer Science and Technology FastText, klasifikasi teks, berita daring, clickbait |
| title | Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText |
| title_full | Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText |
| title_fullStr | Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText |
| title_full_unstemmed | Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText |
| title_short | Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText |
| title_sort | deteksi clickbait pada judul berita online berbahasa indonesia menggunakan fasttext |
| topic | FastText, klasifikasi teks, berita daring, clickbait |
| url | https://journal.isas.or.id/index.php/JACOST/article/view/655 |
| work_keys_str_mv | AT muhazaliebenlito deteksiclickbaitpadajudulberitaonlineberbahasaindonesiamenggunakanfasttext AT arlianisarumyesinta deteksiclickbaitpadajudulberitaonlineberbahasaindonesiamenggunakanfasttext AT muhamadirvanseptiarmusti deteksiclickbaitpadajudulberitaonlineberbahasaindonesiamenggunakanfasttext |