A Construction of Maslov-Type Index for Paths of 2 × 2 Symplectic Matrices

In this article, we construct a kind of Maslov-type index for general paths of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow>...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Yang, Hai-Long Her
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/39
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549155988668416
author Yan Yang
Hai-Long Her
author_facet Yan Yang
Hai-Long Her
author_sort Yan Yang
collection DOAJ
description In this article, we construct a kind of Maslov-type index for general paths of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> symplectic matrices that have two arbitrary endpoints. Our method is consistent and direct no matter whether the starting point of the path is an identity or not, which is different from those regarding the Conley–Zehnder–Long index of symplectic paths starting from an identity and Long’s Maslov-type index of symplectic path segments. In addition, we compare this index with the Conley–Zehnder–Long index.
format Article
id doaj-art-8778d18882f14103be648e631dc3a792
institution Kabale University
issn 2227-7390
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-8778d18882f14103be648e631dc3a7922025-01-10T13:18:03ZengMDPI AGMathematics2227-73902024-12-011313910.3390/math13010039A Construction of Maslov-Type Index for Paths of 2 × 2 Symplectic MatricesYan Yang0Hai-Long Her1Department of Mathematics, Jinan University, Guangzhou 510632, ChinaDepartment of Mathematics, Jinan University, Guangzhou 510632, ChinaIn this article, we construct a kind of Maslov-type index for general paths of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> symplectic matrices that have two arbitrary endpoints. Our method is consistent and direct no matter whether the starting point of the path is an identity or not, which is different from those regarding the Conley–Zehnder–Long index of symplectic paths starting from an identity and Long’s Maslov-type index of symplectic path segments. In addition, we compare this index with the Conley–Zehnder–Long index.https://www.mdpi.com/2227-7390/13/1/39Maslov indexConley–Zehnder–Long indexsecond-order symplectic path
spellingShingle Yan Yang
Hai-Long Her
A Construction of Maslov-Type Index for Paths of 2 × 2 Symplectic Matrices
Mathematics
Maslov index
Conley–Zehnder–Long index
second-order symplectic path
title A Construction of Maslov-Type Index for Paths of 2 × 2 Symplectic Matrices
title_full A Construction of Maslov-Type Index for Paths of 2 × 2 Symplectic Matrices
title_fullStr A Construction of Maslov-Type Index for Paths of 2 × 2 Symplectic Matrices
title_full_unstemmed A Construction of Maslov-Type Index for Paths of 2 × 2 Symplectic Matrices
title_short A Construction of Maslov-Type Index for Paths of 2 × 2 Symplectic Matrices
title_sort construction of maslov type index for paths of 2 2 symplectic matrices
topic Maslov index
Conley–Zehnder–Long index
second-order symplectic path
url https://www.mdpi.com/2227-7390/13/1/39
work_keys_str_mv AT yanyang aconstructionofmaslovtypeindexforpathsof22symplecticmatrices
AT hailongher aconstructionofmaslovtypeindexforpathsof22symplecticmatrices
AT yanyang constructionofmaslovtypeindexforpathsof22symplecticmatrices
AT hailongher constructionofmaslovtypeindexforpathsof22symplecticmatrices