Overcoming resistance to arginine deprivation therapy using GC7 in pleural mesothelioma

Summary: Pleural mesothelioma is a highly chemotherapy-resistant cancer. Approximately 50% of mesotheliomas do not express argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme in arginine biosynthesis, making arginine depletion with pegylated arginine deiminase (ADI-PEG20) an attractive t...

Full description

Saved in:
Bibliographic Details
Main Authors: Josephine Carpentier, Marta Freitas, Valle Morales, Katiuscia Bianchi, John Bomalaski, Peter Szlosarek, Sarah A. Martin
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004224027524
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: Pleural mesothelioma is a highly chemotherapy-resistant cancer. Approximately 50% of mesotheliomas do not express argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme in arginine biosynthesis, making arginine depletion with pegylated arginine deiminase (ADI-PEG20) an attractive therapeutic strategy. We investigated whether combinatory treatment composed of ADI-PEG20 and polyamine inhibitors constitutes a promising novel therapeutic strategy to overcome ADI-PEG20 resistance in mesothelioma patients. Treatment of ADI-PEG20-resistant cell lines with a range of different polyamine inhibitors demonstrated that ADI-PEG20-resistant cell lines were highly sensitive to the spermidine-analog GC7. We observed a synergistic effect of GC7 and ADI-PEG20 in both ADI-PEG20-sensitive and ADI-PEG20-resistant cell lines. Metabolomic analysis revealed that sensitivity to GC7 is due to inhibition of the Tricarboxylic (TCA) cycle. Significantly, combination of GC7 and ADI-PEG20 prevented the emergence of resistant cells in vitro. Taken together, we have identified the therapeutic potential of combinatorial treatment of ADI-PEG20 with GC7 for mesothelioma management.
ISSN:2589-0042