Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks
Methotrexate is an antimetabolic agent with proliferative and immunosuppressive activity. It has been demonstrated to be an effective treatment for acute lymphoblastic leukemia (ALL) in children. However, there is evidence of an association between methotrexate and toxicity risks, which influences t...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/1/306 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841549410792636416 |
---|---|
author | Alejandro Medina Santiago Jorge Iván Bermúdez Rodríguez Jorge Antonio Orozco Torres Julio Alberto Guzmán Rabasa José Manuel Villegas Izaguirre Gladys Falconi Alejandro |
author_facet | Alejandro Medina Santiago Jorge Iván Bermúdez Rodríguez Jorge Antonio Orozco Torres Julio Alberto Guzmán Rabasa José Manuel Villegas Izaguirre Gladys Falconi Alejandro |
author_sort | Alejandro Medina Santiago |
collection | DOAJ |
description | Methotrexate is an antimetabolic agent with proliferative and immunosuppressive activity. It has been demonstrated to be an effective treatment for acute lymphoblastic leukemia (ALL) in children. However, there is evidence of an association between methotrexate and toxicity risks, which influences the personalization of treatment, particularly in the case of childhood ALL. This article presents the development and implementation of an algorithm based on artificial neural networks to detect methotrexate toxicity in pediatric patients with acute lymphoblastic leukemia. The algorithm utilizes historical clinical and laboratory data, with an effectiveness of 99% in the tests performed with the patient dataset. The use of neural networks in medicine is often linked to disease diagnosis systems. However, neural networks are not only capable of recognizing examples but also hold very important information. For this reason, one of the main areas of application of neural networks is the interpretation of medical data. In this article, we diagnose, with the application of neural networks in medicine, a concrete example: detecting methotrexate in its early stages in pediatric patients. |
format | Article |
id | doaj-art-811f788d04c74af6ade59298847db4f3 |
institution | Kabale University |
issn | 2076-3417 |
language | English |
publishDate | 2024-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj-art-811f788d04c74af6ade59298847db4f32025-01-10T13:15:06ZengMDPI AGApplied Sciences2076-34172024-12-0115130610.3390/app15010306Detecting Methotrexate in Pediatric Patients Using Artificial Neural NetworksAlejandro Medina Santiago0Jorge Iván Bermúdez Rodríguez1Jorge Antonio Orozco Torres2Julio Alberto Guzmán Rabasa3José Manuel Villegas Izaguirre4Gladys Falconi Alejandro5Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Ciencias Computacionales—Conahcyt, Santa María Tonanzintla, San Andres Cholula, Puebla 72840, MexicoUniversidad de Ciencia y Tecnología Descartes, Avenida Ciprés 480, Tuxtla Gutiérrez 29065, MexicoUniversidad de Ciencia y Tecnología Descartes, Avenida Ciprés 480, Tuxtla Gutiérrez 29065, MexicoTecnológico Nacional de México, IT Hermosillo, Av. Tecnológico y Periférico Poniente S/N, Hermosillo 83170, MexicoFacultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Boulevard Universitario #1000, Unidad Valle de las Palmas, Tijuana 21500, MexicoSecretaria Académica, Universidad Politécnica del Golfo de México, Carretera Federal Malpaso—El Bellote Km. 171 / Monte Adentro, Paraíso, Tabasco 86600, MexicoMethotrexate is an antimetabolic agent with proliferative and immunosuppressive activity. It has been demonstrated to be an effective treatment for acute lymphoblastic leukemia (ALL) in children. However, there is evidence of an association between methotrexate and toxicity risks, which influences the personalization of treatment, particularly in the case of childhood ALL. This article presents the development and implementation of an algorithm based on artificial neural networks to detect methotrexate toxicity in pediatric patients with acute lymphoblastic leukemia. The algorithm utilizes historical clinical and laboratory data, with an effectiveness of 99% in the tests performed with the patient dataset. The use of neural networks in medicine is often linked to disease diagnosis systems. However, neural networks are not only capable of recognizing examples but also hold very important information. For this reason, one of the main areas of application of neural networks is the interpretation of medical data. In this article, we diagnose, with the application of neural networks in medicine, a concrete example: detecting methotrexate in its early stages in pediatric patients.https://www.mdpi.com/2076-3417/15/1/306methotrexateartificial neural networksacute lymphoblastic leukemia (ALL)detection system |
spellingShingle | Alejandro Medina Santiago Jorge Iván Bermúdez Rodríguez Jorge Antonio Orozco Torres Julio Alberto Guzmán Rabasa José Manuel Villegas Izaguirre Gladys Falconi Alejandro Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks Applied Sciences methotrexate artificial neural networks acute lymphoblastic leukemia (ALL) detection system |
title | Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks |
title_full | Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks |
title_fullStr | Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks |
title_full_unstemmed | Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks |
title_short | Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks |
title_sort | detecting methotrexate in pediatric patients using artificial neural networks |
topic | methotrexate artificial neural networks acute lymphoblastic leukemia (ALL) detection system |
url | https://www.mdpi.com/2076-3417/15/1/306 |
work_keys_str_mv | AT alejandromedinasantiago detectingmethotrexateinpediatricpatientsusingartificialneuralnetworks AT jorgeivanbermudezrodriguez detectingmethotrexateinpediatricpatientsusingartificialneuralnetworks AT jorgeantonioorozcotorres detectingmethotrexateinpediatricpatientsusingartificialneuralnetworks AT julioalbertoguzmanrabasa detectingmethotrexateinpediatricpatientsusingartificialneuralnetworks AT josemanuelvillegasizaguirre detectingmethotrexateinpediatricpatientsusingartificialneuralnetworks AT gladysfalconialejandro detectingmethotrexateinpediatricpatientsusingartificialneuralnetworks |