Minimal growth of entire functions with prescribed zeros outside exceptional sets

Let $h$ be a positive continuous increasing to $+\infty$ function on $\mathbb{R}$. It is proved that for an arbitrary complex sequence $(\zeta_n)$ such that $0<|\zeta_1|\le|\zeta_2|\le\dots$ and $\zeta_n\to\infty$ as $n\to\infty$, there exists an entire function $f$ whose zeros are the $\zeta_n$,...

Full description

Saved in:
Bibliographic Details
Main Authors: I. Andrusyak, P. Filevych, O. Oryshchyn
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2022-10-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/343
Tags: Add Tag
No Tags, Be the first to tag this record!