Rolling vs. Swing: A Strategy for Enhancing Locomotion Speed and Stability in Legged Robots

Legged robots face inherent challenges in energy efficiency and stability at high speeds due to the repetitive acceleration–deceleration cycles of swing-based locomotion. To address these limitations, this paper presents a motion strategy that uses rolling gait instead of swing gait to improve the e...

Full description

Saved in:
Bibliographic Details
Main Authors: Yongjiang Xue, Wei Wang, Mingyu Duan, Nanqing Jiang, Shaoshi Zhang, Xuan Xiao
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/10/7/435
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Legged robots face inherent challenges in energy efficiency and stability at high speeds due to the repetitive acceleration–deceleration cycles of swing-based locomotion. To address these limitations, this paper presents a motion strategy that uses rolling gait instead of swing gait to improve the energy efficiency and stability. First, a wheel-legged quadruped robot, R-Taichi, is developed, which is capable of switching to legged, wheeled, and RHex mobile modes. Second, the mechanical structure of the transformable two-degree-of-freedom leg is introduced, and the kinematics is analyzed. Finally, experiments are conducted to generate wheeled, legged, and RHex motion in both swing and rolling gaits, and the energy efficiency is further compared. The experimental results show that the rolling motion can ensure stable ground contact and mitigate cyclic collisions, reducing specific resistance by up to 30% compared with conventional swing gaits, achieving a top speed of 0.7 m/s with enhanced stability (root mean square error (RMSE) reduction of 22% over RHex mode). Furthermore, R-Taichi exhibits robust multi-terrain adaptability, successfully traversing gravel, grass, and obstacles up to 150 mm in height.
ISSN:2313-7673