Artificial mesenchymal stem cell extracellular vesicles enhanced ischemic stroke treatment through targeted remodeling brain microvascular endothelial cells

Ischemic stroke is the leading cause of disability and mortality worldwide. The blood‒brain barrier (BBB) is the first line of defense after ischemic stroke. Disruption of the BBB induced by brain microvascular endothelial cells (BMECs) dysfunction is a key event that triggers secondary damage to th...

Full description

Saved in:
Bibliographic Details
Main Authors: Shengnan Li, Wei Lv, Jiangna Xu, Jiaqing Yin, Yuqin Chen, Linfeng Liu, Xiang Cao, Wenjing Li, Zhen Li, Hua Chen, Hongliang Xin
Format: Article
Language:English
Published: Elsevier 2025-08-01
Series:Acta Pharmaceutica Sinica B
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211383525004125
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ischemic stroke is the leading cause of disability and mortality worldwide. The blood‒brain barrier (BBB) is the first line of defense after ischemic stroke. Disruption of the BBB induced by brain microvascular endothelial cells (BMECs) dysfunction is a key event that triggers secondary damage to the central nervous system, where blood-borne fluids and immune cells penetrate the brain parenchyma, causing cerebral edema and inflammatory response and further aggravating brain damage. Here, we develop a novel artificial mesenchymal stem cell (MSC) extracellular vesicles by integrating MSC membrane proteins into liposomal bilayers, which encapsulated miR-132-3p with protective effects on BMECs. The artificial extracellular vesicles (MSCo/miR-132-3p) had low immunogenicity to reduce non-specific clearance by the mononuclear phagocytosis system (MPS) and could target ischemia-injured BMECs. After internalization into the damaged BMECs, MSCo/miR-132-3p escaped the lysosomes via the HII phase transition of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and decreased cellular reactive oxygen species (ROS) and apoptosis levels by regulating the RASA1/RAS/PI3K/AKT signaling pathway. In the transient middle cerebral artery occlusion (tMCAO) models, MSCo/miR-132-3p targeted impaired brain regions (approximately 9 times the accumulation of plain liposomes at 12 h), reduced cerebral vascular disruption, protected BBB integrity, and decreased infarct volume (from 44.95% to 6.99%).
ISSN:2211-3835