Unlikelihood of a phonon mechanism for the high-temperature superconductivity in La3Ni2O7

Abstract The discovery of ~80 K superconductivity in nickelate La3Ni2O7 under pressure has ignited intense interest. Here, we present a comprehensive first-principles study of the electron-phonon (e-ph) coupling in La3Ni2O7 and its implications on the observed superconductivity. Our results conclude...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing-Yang You, Zien Zhu, Mauro Del Ben, Wei Chen, Zhenglu Li
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-024-01483-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The discovery of ~80 K superconductivity in nickelate La3Ni2O7 under pressure has ignited intense interest. Here, we present a comprehensive first-principles study of the electron-phonon (e-ph) coupling in La3Ni2O7 and its implications on the observed superconductivity. Our results conclude that the e-ph coupling is too weak (with a coupling constant λ ≲ 0.5) to account for the high T c , albeit interesting many-electron correlation effects exist. While Coulomb interactions (via G W self-energy and Hubbard U) enhance the e-ph coupling strength, electron doping (oxygen vacancies) introduces no major changes. Additionally, different structural phases display varying characteristics near the Fermi level, but do not alter the conclusion. The e-ph coupling landscape of La3Ni2O7 is intrinsically different from that of infinite-layer nickelates. These findings suggest that a phonon-mediated mechanism is unlikely to be responsible for the observed superconductivity in La3Ni2O7, pointing instead to an unconventional nature.
ISSN:2057-3960