Unlikelihood of a phonon mechanism for the high-temperature superconductivity in La3Ni2O7
Abstract The discovery of ~80 K superconductivity in nickelate La3Ni2O7 under pressure has ignited intense interest. Here, we present a comprehensive first-principles study of the electron-phonon (e-ph) coupling in La3Ni2O7 and its implications on the observed superconductivity. Our results conclude...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | npj Computational Materials |
Online Access: | https://doi.org/10.1038/s41524-024-01483-4 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The discovery of ~80 K superconductivity in nickelate La3Ni2O7 under pressure has ignited intense interest. Here, we present a comprehensive first-principles study of the electron-phonon (e-ph) coupling in La3Ni2O7 and its implications on the observed superconductivity. Our results conclude that the e-ph coupling is too weak (with a coupling constant λ ≲ 0.5) to account for the high T c , albeit interesting many-electron correlation effects exist. While Coulomb interactions (via G W self-energy and Hubbard U) enhance the e-ph coupling strength, electron doping (oxygen vacancies) introduces no major changes. Additionally, different structural phases display varying characteristics near the Fermi level, but do not alter the conclusion. The e-ph coupling landscape of La3Ni2O7 is intrinsically different from that of infinite-layer nickelates. These findings suggest that a phonon-mediated mechanism is unlikely to be responsible for the observed superconductivity in La3Ni2O7, pointing instead to an unconventional nature. |
---|---|
ISSN: | 2057-3960 |