Dynamic flood risk prediction in Houston: a multi-model machine learning approach
In assessing flood susceptibility in Houston, key geographical parameters such as drainage density, slope, distance from rivers and roads, LULC, and rainfall data were analyzed using machine learning models, including Decision Trees, Random Forest, Gradient Boosting, SVM, and ANN. Performance evalua...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2024-01-01
|
| Series: | Geocarto International |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.1080/10106049.2024.2432866 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|