Addressing Data Imbalance in Crash Data: Evaluating Generative Adversarial Network’s Efficacy Against Conventional Methods
In the realm of traffic safety analysis, the inherent imbalance in crash datasets, particularly in terms of injury severity, poses a significant challenge for machine learning-based classification models. This study delves into the efficacy of Generative Adversarial Networks (GANs), with a specific...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10819443/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|