Research on Rheological Behavior and Strength Characteristics of Cement-Based Grouting Materials
The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparativ...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/11/1796 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparatively analyze the mechanical characteristics of a composite cement-based grouting material (HGC), ordinary Portland cement (OPC), and sulfated aluminum cement (SAC) slurry and their cured grouts. The HGC (High-performance Grouting Composite) slurry is formulated with 15.75% sulfated aluminum cement (SAC), 54.25% ordinary Portland cement (OPC), 10% fly ash, and 20% mineral powder, achieving a water/cement ratio of 0.26. The results indicate that HGC slurry more closely follows power-law flow characteristics, while OPC and SAC slurries fit better with the Bingham model. The structural recovery time for HGC slurry after high-strain disturbances is 52 s, significantly lower than the 312 s for OPC and 121 s for SAC, indicating that HGC can quickly produce hydration products that re-bond the flocculated structure. NMR T2 spectra show that HGC cured grouts have the lowest porosity, predominantly featuring inter-nanopores, whereas OPC and SAC have more super-nanopores. Uniaxial compression tests show that the uniaxial compressive strength of HGC, SAC, and OPC samples at various curing ages gradually decreases. Compared to traditional cementitious materials, HGC exhibits a rapid increase in uniaxial compressive strength within the first seven days, with an increase rate of approximately 77.97%. Finally, the relationship between micropore distribution and strength is analyzed, and the micro-mechanisms underlying the strength differences of different grouting materials are discussed. This study aids in developing a comparative analysis system of mechanical properties for deep surrounding rock grouting materials, providing a reference for selecting grouting materials for various engineering fractured rock masses. |
|---|---|
| ISSN: | 2075-5309 |