First Principles Study of p-Type Transition and Enhanced Optoelectronic Properties of g-ZnO Based on Diverse Doping Strategies
By utilizing first principles calculations, p-type transition in graphene-like zinc oxide (g-ZnO) through elemental doping was achieved, and the influence of different doping strategies on the electronic structure, energy band structure, and optoelectronic properties of g-ZnO was investigated. This...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/14/23/1863 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | By utilizing first principles calculations, p-type transition in graphene-like zinc oxide (g-ZnO) through elemental doping was achieved, and the influence of different doping strategies on the electronic structure, energy band structure, and optoelectronic properties of g-ZnO was investigated. This research study delves into the effects of strategies such as single-acceptor doping, double-acceptor co-doping, and donor–acceptor co-doping on the properties of g-ZnO. This study found that single-acceptor doping with Li and Ag elements can form shallow acceptor levels, thereby facilitating p-type conductivity. Furthermore, the introduction of the donor element F can compensate for the deep acceptor levels formed by double-acceptor co-doping, transforming them into shallow acceptor levels and modulating the energy band structure. The co-doping strategy involving double-acceptor elements and a donor element further optimizes the properties of g-ZnO, such as reducing the bandgap and enhancing carrier mobility. Additionally, in terms of optical properties, g-Zn<sub>14</sub>Li<sub>2</sub>FO<sub>15</sub> demonstrates outstanding performance in the visible-light region compared with other doping systems, especially generating a higher absorption peak around the wavelength of 520 nm. These findings provide a theoretical foundation for the application of g-ZnO in optoelectronic devices. |
|---|---|
| ISSN: | 2079-4991 |