A visualized machine learning model using noninvasive parameters to differentiate men with and without prostatic carcinoma before biopsy
Abstract This study aimed to create a visualized extreme gradient boosting (XGBOOST) model to distinguish prostatic carcinoma (PCA) from non-PCA using noninvasive prebiopsy parameters before biopsy. This was a cross-sectional study of 310 Chinese men who underwent prostate biopsy and were divided in...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-12765-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|