Machine learning approaches for imputing missing meteorological data in Senegal
This study presents the first comprehensive evaluation in West Africa of four imputation methods, Decision Tree (DT), Random Forest (RF), Extreme Gradient Boosting (XGB), and Ordinary Kriging (OK), applied to six core meteorological variables across Senegal over a ten-year period (2015–2024). By sim...
Saved in:
| Main Authors: | Mory Toure, Nana Ama Browne Klutse, Mamadou Adama Sarr, Md Abul Ehsan Bhuiyan, Annine Duclaire Kenne, Wassila Mamadou Thiaw, Daouda Badiane, Amadou Thierno Gaye, Ousmane Ndiaye, Cheikh Mbow |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-09-01
|
| Series: | Applied Computing and Geosciences |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2590197425000631 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Cartographie des changements de l’occupation du sol entre 1990 et 2002 dans le nord du Sénégal (Ferlo) à partir des images Landsat
by: Mamadou Adama Sarr
Published: (2009-10-01) -
A spatiotemporal recurrent neural network for missing data imputation in tunnel monitoring
by: Junchen Ye, et al.
Published: (2025-08-01) -
Scmaskgan: masked multi-scale CNN and attention-enhanced GAN for scRNA-seq dropout imputation
by: You Wu, et al.
Published: (2025-05-01) -
A Novel Aggregated Multiple Imputation Approach for Enhanced Survival Prediction and Classification on Breast Cancer and Lung Cancer Data
by: P. Deepa, et al.
Published: (2024-01-01) -
KFCM-PSOTD : An Imputation Technique for Missing Values in Incomplete Data Classification
by: Muhaimin Ilyas, et al.
Published: (2024-05-01)