Year-round daily wildfire prediction and key factor analysis using machine learning: a case study of Gangwon State, South Korea
Abstract Under climate change and human’s dominant influence, wildfires have been increasing in frequency and scale, highlighting the demand of effective wildfire prediction and response. While prior research often maps high-risk areas, a few studies predict wildfire occurrences at specific dates an...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-15508-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|