The Electromechanical Modeling and Parametric Analysis of a Piezoelectric Vibration Energy Harvester for Induction Motors

Industrial motors generate vibration energy that can be converted into electrical energy using piezoelectric vibration energy harvesters (pVEHs). These energy harvesters can power devices or function as self-powered sensors. However, optimal electromechanical designs of pVEHs are required to improve...

Full description

Saved in:
Bibliographic Details
Main Authors: Moisés Vázquez-Toledo, Arxel de León, Francisco López-Huerta, Pedro J. García-Ramírez, Ernesto A. Elvira-Hernández, Agustín L. Herrera-May
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Technologies
Subjects:
Online Access:https://www.mdpi.com/2227-7080/13/5/194
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Industrial motors generate vibration energy that can be converted into electrical energy using piezoelectric vibration energy harvesters (pVEHs). These energy harvesters can power devices or function as self-powered sensors. However, optimal electromechanical designs of pVEHs are required to improve their output performance under different vibration frequency and amplitude conditions. To address this challenge, we performed the electromechanical modeling of a multilayer pVEH that harvests vibration energy from induction electric motors at frequencies close to 30 Hz. In addition, a parametric analysis of the geometry of the multilayer piezoelectric device was conducted to optimize its deflection and output voltage, considering the substrate length, piezoelectric patch position, and dimensions of the central hole. Our analytical model predicted the deflection and first bending resonant frequency of the piezoelectric device, with good agreement with predictions from finite element method (FEM) models. The proposed piezoelectric device achieved an output voltage of 143.2 V and an output power of 3.2 mW with an optimal resistance of 6309.5 kΩ. Also, the principal stresses of the pVEH were assessed using linear trend analysis, finding a safe operating range up to an acceleration of 0.7 g. The electromechanical design of the pVEH allowed for effective synchronization with the vibration frequency of an induction electric motor. This energy harvester has a potential application in industrial electric motors to transform their vibration energy into electrical energy to power sensors.
ISSN:2227-7080