Prolongation Structure of a Development Equation and Its Darboux Transformation Solution

This paper explores the third-order nonlinear coupled KdV equation utilizing prolongation structure theory and gauge transformation. By applying the prolongation structure method, we obtained an extended version of the equation. Starting from the Lax pairs of the equation, we successfully derived th...

Full description

Saved in:
Bibliographic Details
Main Authors: Lixiu Wang, Jihong Wang, Yangjie Jia
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/6/921
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper explores the third-order nonlinear coupled KdV equation utilizing prolongation structure theory and gauge transformation. By applying the prolongation structure method, we obtained an extended version of the equation. Starting from the Lax pairs of the equation, we successfully derived the corresponding Darboux transformation and Bäcklund transformation for this equation, which are fundamental to our solving process. Subsequently, we constructed and calculated the recursive operator for this equation, providing an effective approach to tackling complex problems within this domain. These results are crucial for advancing our understanding of the underlying principles of soliton theory and their implications on related natural phenomena. Our findings not only enrich the theoretical framework but also offer practical tools for further research in nonlinear wave dynamics.
ISSN:2227-7390