Automated Semantic Segmentation of Arctic Surface Water Features with Very-High Resolution Satellite X-Band Radar Imagery and U-Net Deep Learning: Segmentation sémantique automatisée des caractéristiques des eaux de surface de l’Arctique à partir d’images radar satellite en bande X à très haute résolution et à l’aide de l’apprentissage profond U-Net

Repeatable methods capable of quantifying Arctic surface water extent at high resolutions are important, but still require development. Here, we present a study using very-high resolution (VHR) X-band Synthetic Aperture Radar (SAR) imagery from Capella Space for fine-scale semantic segmentation of A...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael Allan Merchant, Masoud Mahdianpari, Laura Bourgeau-Chavez, Ben DeVries, Aaron Berg
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Canadian Journal of Remote Sensing
Subjects:
Online Access:http://dx.doi.org/10.1080/07038992.2025.2533460
Tags: Add Tag
No Tags, Be the first to tag this record!