A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification

Vannarut Satitpitakul,1,2 Apiwit Puangsricharern,3 Surachet Yuktiratna,3 Yossapon Jaisarn,4 Keeratika Sangsao,4 Vilavun Puangsricharern,1,2 Ngamjit Kasetsuwan,1,2 Usanee Reinprayoon,1,2 Thanachaporn Kittipibul1,2 1Center of Excellence for Cornea and Stem Cell Transplantation, Department of Ophthalmo...

Full description

Saved in:
Bibliographic Details
Main Authors: Satitpitakul V, Puangsricharern A, Yuktiratna S, Jaisarn Y, Sangsao K, Puangsricharern V, Kasetsuwan N, Reinprayoon U, Kittipibul T
Format: Article
Language:English
Published: Dove Medical Press 2025-01-01
Series:Clinical Ophthalmology
Subjects:
Online Access:https://www.dovepress.com/a-convolutional-neural-network-using-anterior-segment-photos-for-infec-peer-reviewed-fulltext-article-OPTH
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841555977887809536
author Satitpitakul V
Puangsricharern A
Yuktiratna S
Jaisarn Y
Sangsao K
Puangsricharern V
Kasetsuwan N
Reinprayoon U
Kittipibul T
author_facet Satitpitakul V
Puangsricharern A
Yuktiratna S
Jaisarn Y
Sangsao K
Puangsricharern V
Kasetsuwan N
Reinprayoon U
Kittipibul T
author_sort Satitpitakul V
collection DOAJ
description Vannarut Satitpitakul,1,2 Apiwit Puangsricharern,3 Surachet Yuktiratna,3 Yossapon Jaisarn,4 Keeratika Sangsao,4 Vilavun Puangsricharern,1,2 Ngamjit Kasetsuwan,1,2 Usanee Reinprayoon,1,2 Thanachaporn Kittipibul1,2 1Center of Excellence for Cornea and Stem Cell Transplantation, Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; 2Excellence Center for Cornea and Stem Cell Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; 3IM Impower Company Limited, Bangkok, Thailand; 4Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandCorrespondence: Vannarut Satitpitakul, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand, Tel +66-894959022, Email Vannarut.S@chula.ac.thPurpose: To develop a comprehensively deep learning algorithm to differentiate between bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal corneas.Methods: This retrospective study collected slit-lamp photos of patients with bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal cornea. Causative organisms of infectious keratitis were identified by either positive culture or clinical response to single treatment. Convolutional neural networks (ResNet50, DenseNet121, VGG19) and Ensemble with probability weighting were used to develop a deep learning algorithm. The performance including accuracy, precision, recall, F1 score, specificity and AUC has been reported.Results: Total of 6478 photos from 2171 eyes, composed of 2400 bacterial keratitis, 1616 fungal keratitis, 1545 non-infectious corneal lesions, and 917 normal corneas were collected from hospital database. DenseNet121 demonstrated the best performance among three convolutional neural networks with the accuracy of 0.8 (95% CI 0.74– 0.86). The ensemble technique showed higher performance than single algorithm with the accuracy of 0.83 (95% 0.78– 0.88).Conclusion: Convolutional neural networks with ensemble techniques provided the best performance in discriminating bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal corneas. Our models can be used as a screening tool for non-ophthalmic health care providers and ophthalmologists for rapid provisional diagnosis of infectious keratitis.Keywords: infectious keratitis, cornea ulcer, keratitis, conventional neural network, deep learning algorithm
format Article
id doaj-art-66df10a440ae4445807391ffe3841364
institution Kabale University
issn 1177-5483
language English
publishDate 2025-01-01
publisher Dove Medical Press
record_format Article
series Clinical Ophthalmology
spelling doaj-art-66df10a440ae4445807391ffe38413642025-01-07T16:42:40ZengDove Medical PressClinical Ophthalmology1177-54832025-01-01Volume 19738199039A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis IdentificationSatitpitakul VPuangsricharern AYuktiratna SJaisarn YSangsao KPuangsricharern VKasetsuwan NReinprayoon UKittipibul TVannarut Satitpitakul,1,2 Apiwit Puangsricharern,3 Surachet Yuktiratna,3 Yossapon Jaisarn,4 Keeratika Sangsao,4 Vilavun Puangsricharern,1,2 Ngamjit Kasetsuwan,1,2 Usanee Reinprayoon,1,2 Thanachaporn Kittipibul1,2 1Center of Excellence for Cornea and Stem Cell Transplantation, Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; 2Excellence Center for Cornea and Stem Cell Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; 3IM Impower Company Limited, Bangkok, Thailand; 4Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandCorrespondence: Vannarut Satitpitakul, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand, Tel +66-894959022, Email Vannarut.S@chula.ac.thPurpose: To develop a comprehensively deep learning algorithm to differentiate between bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal corneas.Methods: This retrospective study collected slit-lamp photos of patients with bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal cornea. Causative organisms of infectious keratitis were identified by either positive culture or clinical response to single treatment. Convolutional neural networks (ResNet50, DenseNet121, VGG19) and Ensemble with probability weighting were used to develop a deep learning algorithm. The performance including accuracy, precision, recall, F1 score, specificity and AUC has been reported.Results: Total of 6478 photos from 2171 eyes, composed of 2400 bacterial keratitis, 1616 fungal keratitis, 1545 non-infectious corneal lesions, and 917 normal corneas were collected from hospital database. DenseNet121 demonstrated the best performance among three convolutional neural networks with the accuracy of 0.8 (95% CI 0.74– 0.86). The ensemble technique showed higher performance than single algorithm with the accuracy of 0.83 (95% 0.78– 0.88).Conclusion: Convolutional neural networks with ensemble techniques provided the best performance in discriminating bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal corneas. Our models can be used as a screening tool for non-ophthalmic health care providers and ophthalmologists for rapid provisional diagnosis of infectious keratitis.Keywords: infectious keratitis, cornea ulcer, keratitis, conventional neural network, deep learning algorithmhttps://www.dovepress.com/a-convolutional-neural-network-using-anterior-segment-photos-for-infec-peer-reviewed-fulltext-article-OPTHinfectious keratitiscornea ulcerkeratitisconventional neural networkdeep learning algorithm
spellingShingle Satitpitakul V
Puangsricharern A
Yuktiratna S
Jaisarn Y
Sangsao K
Puangsricharern V
Kasetsuwan N
Reinprayoon U
Kittipibul T
A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification
Clinical Ophthalmology
infectious keratitis
cornea ulcer
keratitis
conventional neural network
deep learning algorithm
title A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification
title_full A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification
title_fullStr A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification
title_full_unstemmed A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification
title_short A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification
title_sort convolutional neural network using anterior segment photos for infectious keratitis identification
topic infectious keratitis
cornea ulcer
keratitis
conventional neural network
deep learning algorithm
url https://www.dovepress.com/a-convolutional-neural-network-using-anterior-segment-photos-for-infec-peer-reviewed-fulltext-article-OPTH
work_keys_str_mv AT satitpitakulv aconvolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT puangsricharerna aconvolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT yuktiratnas aconvolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT jaisarny aconvolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT sangsaok aconvolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT puangsricharernv aconvolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT kasetsuwann aconvolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT reinprayoonu aconvolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT kittipibult aconvolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT satitpitakulv convolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT puangsricharerna convolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT yuktiratnas convolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT jaisarny convolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT sangsaok convolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT puangsricharernv convolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT kasetsuwann convolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT reinprayoonu convolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification
AT kittipibult convolutionalneuralnetworkusinganteriorsegmentphotosforinfectiouskeratitisidentification