Cloud–Edge–End Collaborative Federated Learning: Enhancing Model Accuracy and Privacy in Non-IID Environments
Cloud–edge–end computing architecture is crucial for large-scale edge data processing and analysis. However, the diversity of terminal nodes and task complexity in this architecture often result in non-independent and identically distributed (non-IID) data, making it challenging to balance data hete...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/24/24/8028 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!