Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures
Abstract The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-55612-0 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841559214509522944 |
---|---|
author | Xin Lin Shize Geng Xianglong Du Feiteng Wang Xu Zhang Fang Xiao Zhengyi Xiao Yucheng Wang Jun Cheng Zhifeng Zheng Xiaoqing Huang Lingzheng Bu |
author_facet | Xin Lin Shize Geng Xianglong Du Feiteng Wang Xu Zhang Fang Xiao Zhengyi Xiao Yucheng Wang Jun Cheng Zhifeng Zheng Xiaoqing Huang Lingzheng Bu |
author_sort | Xin Lin |
collection | DOAJ |
description | Abstract The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based heterophase nanotrepang with rare earth (RE)-doped face-centered cubic Pt (fcc-Pt) and trigonal Pt-tellurium (t-PtTe2) configurations ((RE-Pt)-PtTe2 HPNT). Yttrium (Y) is identified as the optimal dopant, existing as single sites and clusters on the surface. The (Y-Pt)-PtTe2 HPNT/C demonstrates the superior mass and specific activities of 6.4 A mgPt −1 and 5.4 mA cm-2, outperforming commercial Pt/C by factors of 49.2 and 25.7, respectively. Additionally, it achieves a normalized MEA power density of 485.9 W gPt −1, tripling that of Pt/C. Density functional theory calculations further reveal that Y doping enhances HCOO* intermediate adsorption and suppresses CO intermediate formation, thereby promoting FAOR kinetics. This work highlights the role of RE metals in heterostructure regulation of Pt-based anodic nanomaterials for achieving the efficient direct formic acid electrocatalysis. |
format | Article |
id | doaj-art-646fb317088240dca4229b5f84a83bda |
institution | Kabale University |
issn | 2041-1723 |
language | English |
publishDate | 2025-01-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj-art-646fb317088240dca4229b5f84a83bda2025-01-05T12:40:13ZengNature PortfolioNature Communications2041-17232025-01-0116111410.1038/s41467-024-55612-0Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructuresXin Lin0Shize Geng1Xianglong Du2Feiteng Wang3Xu Zhang4Fang Xiao5Zhengyi Xiao6Yucheng Wang7Jun Cheng8Zhifeng Zheng9Xiaoqing Huang10Lingzheng Bu11College of Energy, Xiamen UniversityCollege of Energy, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityCollege of Energy, Xiamen UniversityCollege of Energy, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityCollege of Energy, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityCollege of Energy, Xiamen UniversityAbstract The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based heterophase nanotrepang with rare earth (RE)-doped face-centered cubic Pt (fcc-Pt) and trigonal Pt-tellurium (t-PtTe2) configurations ((RE-Pt)-PtTe2 HPNT). Yttrium (Y) is identified as the optimal dopant, existing as single sites and clusters on the surface. The (Y-Pt)-PtTe2 HPNT/C demonstrates the superior mass and specific activities of 6.4 A mgPt −1 and 5.4 mA cm-2, outperforming commercial Pt/C by factors of 49.2 and 25.7, respectively. Additionally, it achieves a normalized MEA power density of 485.9 W gPt −1, tripling that of Pt/C. Density functional theory calculations further reveal that Y doping enhances HCOO* intermediate adsorption and suppresses CO intermediate formation, thereby promoting FAOR kinetics. This work highlights the role of RE metals in heterostructure regulation of Pt-based anodic nanomaterials for achieving the efficient direct formic acid electrocatalysis.https://doi.org/10.1038/s41467-024-55612-0 |
spellingShingle | Xin Lin Shize Geng Xianglong Du Feiteng Wang Xu Zhang Fang Xiao Zhengyi Xiao Yucheng Wang Jun Cheng Zhifeng Zheng Xiaoqing Huang Lingzheng Bu Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures Nature Communications |
title | Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures |
title_full | Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures |
title_fullStr | Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures |
title_full_unstemmed | Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures |
title_short | Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures |
title_sort | efficient direct formic acid electrocatalysis enabled by rare earth doped platinum tellurium heterostructures |
url | https://doi.org/10.1038/s41467-024-55612-0 |
work_keys_str_mv | AT xinlin efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT shizegeng efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT xianglongdu efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT feitengwang efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT xuzhang efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT fangxiao efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT zhengyixiao efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT yuchengwang efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT juncheng efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT zhifengzheng efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT xiaoqinghuang efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures AT lingzhengbu efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures |