Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures

Abstract The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based...

Full description

Saved in:
Bibliographic Details
Main Authors: Xin Lin, Shize Geng, Xianglong Du, Feiteng Wang, Xu Zhang, Fang Xiao, Zhengyi Xiao, Yucheng Wang, Jun Cheng, Zhifeng Zheng, Xiaoqing Huang, Lingzheng Bu
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55612-0
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841559214509522944
author Xin Lin
Shize Geng
Xianglong Du
Feiteng Wang
Xu Zhang
Fang Xiao
Zhengyi Xiao
Yucheng Wang
Jun Cheng
Zhifeng Zheng
Xiaoqing Huang
Lingzheng Bu
author_facet Xin Lin
Shize Geng
Xianglong Du
Feiteng Wang
Xu Zhang
Fang Xiao
Zhengyi Xiao
Yucheng Wang
Jun Cheng
Zhifeng Zheng
Xiaoqing Huang
Lingzheng Bu
author_sort Xin Lin
collection DOAJ
description Abstract The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based heterophase nanotrepang with rare earth (RE)-doped face-centered cubic Pt (fcc-Pt) and trigonal Pt-tellurium (t-PtTe2) configurations ((RE-Pt)-PtTe2 HPNT). Yttrium (Y) is identified as the optimal dopant, existing as single sites and clusters on the surface. The (Y-Pt)-PtTe2 HPNT/C demonstrates the superior mass and specific activities of 6.4 A mgPt −1 and 5.4 mA cm-2, outperforming commercial Pt/C by factors of 49.2 and 25.7, respectively. Additionally, it achieves a normalized MEA power density of 485.9 W gPt −1, tripling that of Pt/C. Density functional theory calculations further reveal that Y doping enhances HCOO* intermediate adsorption and suppresses CO intermediate formation, thereby promoting FAOR kinetics. This work highlights the role of RE metals in heterostructure regulation of Pt-based anodic nanomaterials for achieving the efficient direct formic acid electrocatalysis.
format Article
id doaj-art-646fb317088240dca4229b5f84a83bda
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-646fb317088240dca4229b5f84a83bda2025-01-05T12:40:13ZengNature PortfolioNature Communications2041-17232025-01-0116111410.1038/s41467-024-55612-0Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructuresXin Lin0Shize Geng1Xianglong Du2Feiteng Wang3Xu Zhang4Fang Xiao5Zhengyi Xiao6Yucheng Wang7Jun Cheng8Zhifeng Zheng9Xiaoqing Huang10Lingzheng Bu11College of Energy, Xiamen UniversityCollege of Energy, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityCollege of Energy, Xiamen UniversityCollege of Energy, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityCollege of Energy, Xiamen UniversityState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen UniversityCollege of Energy, Xiamen UniversityAbstract The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based heterophase nanotrepang with rare earth (RE)-doped face-centered cubic Pt (fcc-Pt) and trigonal Pt-tellurium (t-PtTe2) configurations ((RE-Pt)-PtTe2 HPNT). Yttrium (Y) is identified as the optimal dopant, existing as single sites and clusters on the surface. The (Y-Pt)-PtTe2 HPNT/C demonstrates the superior mass and specific activities of 6.4 A mgPt −1 and 5.4 mA cm-2, outperforming commercial Pt/C by factors of 49.2 and 25.7, respectively. Additionally, it achieves a normalized MEA power density of 485.9 W gPt −1, tripling that of Pt/C. Density functional theory calculations further reveal that Y doping enhances HCOO* intermediate adsorption and suppresses CO intermediate formation, thereby promoting FAOR kinetics. This work highlights the role of RE metals in heterostructure regulation of Pt-based anodic nanomaterials for achieving the efficient direct formic acid electrocatalysis.https://doi.org/10.1038/s41467-024-55612-0
spellingShingle Xin Lin
Shize Geng
Xianglong Du
Feiteng Wang
Xu Zhang
Fang Xiao
Zhengyi Xiao
Yucheng Wang
Jun Cheng
Zhifeng Zheng
Xiaoqing Huang
Lingzheng Bu
Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures
Nature Communications
title Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures
title_full Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures
title_fullStr Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures
title_full_unstemmed Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures
title_short Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures
title_sort efficient direct formic acid electrocatalysis enabled by rare earth doped platinum tellurium heterostructures
url https://doi.org/10.1038/s41467-024-55612-0
work_keys_str_mv AT xinlin efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT shizegeng efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT xianglongdu efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT feitengwang efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT xuzhang efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT fangxiao efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT zhengyixiao efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT yuchengwang efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT juncheng efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT zhifengzheng efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT xiaoqinghuang efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures
AT lingzhengbu efficientdirectformicacidelectrocatalysisenabledbyrareearthdopedplatinumtelluriumheterostructures