A Probabilistic Adversarial Autoencoder for Novelty Detection: Leveraging Lightweight Design and Reconstruction Loss
A novelty detection task involves identifying whether a data point is an outlier, given a training dataset that primarily captures the distribution of inliers. The novel class is usually absent, poorly sampled, or not well defined in the training data. A common technique for anomaly detection at pre...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11025478/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|