Response of astrocytes and their interaction with surrounding brain cells after acute ischemia-reperfusion analyzed by single-cell transcriptome sequencing
Astrocytes play a key role in the occurrence and development of ischemic stroke. However, reactive astrocytes have both detrimental and protective roles in ischemic stroke. Regrettably, the stimulation signals associated with the transformation of astrocytes into different subclusters lack systemic...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Brain Research Bulletin |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S0361923025001674 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Astrocytes play a key role in the occurrence and development of ischemic stroke. However, reactive astrocytes have both detrimental and protective roles in ischemic stroke. Regrettably, the stimulation signals associated with the transformation of astrocytes into different subclusters lack systemic analysis, and the mechanism by which astrocytes produce multiple effects is not entirely clear. We investigated the heterogeneity of mouse astrocytes 12 h after cerebral ischemia-reperfusion via Single-cell RNA sequencing and verified gene expressions by reverse transcription-polymerase chain reaction. We acquired astrocyte subclusters’ transcriptional characteristics involved in diversified functions. To explore what stimulus signals cause astrocyte heterogeneity, we present a blueprint for cellular communication between astrocyte subclusters and other surrounding brain cells 12 h after ischemia-reperfusion, and identified 9 genes which are potential and promising for being therapeutic targets and 6 genes were specific to astrocyte subcluster 2 that tend to resist ischemia-reperfusion injury. At 12 h after ischemia-reperfusion, each subcluster of astrocytes is characteristic in terms of function and communication with surrounding cells, which is based on the activation genes and transcription molecules that we have revealed with subcluster characteristics. Our results provide a basis for revealing the anti-injury response of astrocytes to cerebral ischemia-reperfusion, which involves coordination of different subclusters and the coordination of astrocytes with surrounding brain cells. |
|---|---|
| ISSN: | 1873-2747 |