Analysis of bulletproof performance of structurally optimized ceramic composite armor through numerical simulation and live fire test

Abstract This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced ​​bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint ar...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhiyong Chen, Jian Hou, Fei Gao, Sier Deng, Yingqiang Xu, Jing Qin, Shuaishuai Cui, Jun-Hyun Kim
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-80752-0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced ​​bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint areas. These structurally optimized composite pads are examined by numerical simulation of impact dynamics to understand their anti-penetration performance whose accuracy is then validated by live fire tests. The results reveal that (1) the ceramic plates with improved edge design enhance the anti-penetration efficiency, (2) the established dynamic constitutive model of penetration resistance effectively predicts the ballistic performance of the armor pad, and (3) inability to penetrate high-speed real bullets through the armor suggests that the ballistic performance fully meets the protection requirements of the MIL-A-46103EIII Class 2 A standard. In this regard, structural regulation of the shape of the ceramic-based composite plates allows for the design of lightweight armor with improved bulletproof capability.
ISSN:2045-2322