The Effect of the Extraction Temperature on the Colligative, Hydrodynamic and Rheological Properties of Psyllium Husk Mucilage Raw Solutions
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following tempera...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Molecules |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1420-3049/30/15/3219 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following temperatures: 40 °C (AX40), 60 °C (AX60), 80 °C (AX80), and 100 °C (AX100). These were characterised in terms of their hydrodynamic, osmotic, and rheological properties, as well as the average molecular mass of the polysaccharide fractions. An increase in extraction temperature resulted in an increase in weight-average molecular mass, from 2190 kDa (AX40) to 3320 kDa (AX100). The values of the osmotic average molecular mass were higher than those obtained from GPC, and decreased with increasing extraction temperature. The dominance of biopolymer–biopolymer interactions was evident in the shape of the autocorrelation function, which did not disappear as the extraction temperature and concentration increased. Furthermore, the values of the second virial coefficient were negative, which is indicative of the tendency of biopolymer chains to aggregate. The rheological properties of the extracts changed from being described by a power-law model (AX40 and AX60) to being described by the full non-linear De Kee model (AX80 and AX100). |
|---|---|
| ISSN: | 1420-3049 |