Forest Fire Discrimination Based on Angle Slope Index and Himawari-8

In the background of high frequency and intensity forest fires driven by future warming and a drying climate, early detection and effective control of fires are extremely important to reduce losses. Meteorological satellite imagery is commonly used for near-real-time forest fire monitoring, thanks t...

Full description

Saved in:
Bibliographic Details
Main Authors: Pingbo Liu, Gui Zhang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/1/142
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the background of high frequency and intensity forest fires driven by future warming and a drying climate, early detection and effective control of fires are extremely important to reduce losses. Meteorological satellite imagery is commonly used for near-real-time forest fire monitoring, thanks to its high temporal resolution. To address the misjudgments and omissions caused by solely relying on changes in infrared band brightness values and a single image in forest fire early discrimination, this paper constructs the angle slope indexes ANIR, AMIR, AMNIR, ∆ANIR, and ∆AMIR based on the reflectance of the red band and near-infrared band, the brightness temperature of the mid-infrared and far-infrared band, the difference between the AMIR and ANIR, and the index difference between time-series images. These indexes integrate the strong inter-band correlations and the reflectance characteristics of visible and short-wave infrared bands to simultaneously monitor smoke and fuel biomass changes in forest fires. We also used the decomposed three-dimensional OTSU (maximum inter-class variance method) algorithm to calculate the segmentation threshold of the sub-regions constructed from the AMNIR data to address the different discrimination thresholds caused by different time and space backgrounds. In this paper, the Himawari-8 satellite imagery was used to detect forest fires based on the angle slope indices thresholds algorithm (ASITR), and the fusion of the decomposed three-dimensional OTSU and ASITR algorithm (FDOA). Results show that, compared with ASITR, the accuracy of FDOA decreased by 3.41% (0.88 vs. 0.85), the omission error decreased by 52.94% (0.17 vs. 0.08), and the overall evaluation increased by 3.53% (0.85 vs. 0.88). The ASITR has higher accuracy, and the fusion of decomposed three-dimensional OTSU and angle slope indexes can reduce forest fire omission error and improve the overall evaluation.
ISSN:2072-4292