ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location

BackgroundVentricular fibrillation (VF) is the deadliest arrhythmia, often caused by myocardial ischaemia. VF patients require urgent intervention planned quickly and non-invasively. However, the accuracy with which electrocardiographic (ECG) markers reflect the underlying arrhythmic substrate is un...

Full description

Saved in:
Bibliographic Details
Main Authors: Hector Martinez-Navarro, Ambre Bertrand, Ruben Doste, Hannah Smith, Jakub Tomek, Giuseppe Ristagno, Rafael S. Oliveira, Rodrigo Weber dos Santos, Sandeep V. Pandit, Blanca Rodriguez
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-11-01
Series:Frontiers in Cardiovascular Medicine
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcvm.2024.1408822/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846151684226547712
author Hector Martinez-Navarro
Ambre Bertrand
Ruben Doste
Hannah Smith
Jakub Tomek
Giuseppe Ristagno
Rafael S. Oliveira
Rodrigo Weber dos Santos
Sandeep V. Pandit
Blanca Rodriguez
author_facet Hector Martinez-Navarro
Ambre Bertrand
Ruben Doste
Hannah Smith
Jakub Tomek
Giuseppe Ristagno
Rafael S. Oliveira
Rodrigo Weber dos Santos
Sandeep V. Pandit
Blanca Rodriguez
author_sort Hector Martinez-Navarro
collection DOAJ
description BackgroundVentricular fibrillation (VF) is the deadliest arrhythmia, often caused by myocardial ischaemia. VF patients require urgent intervention planned quickly and non-invasively. However, the accuracy with which electrocardiographic (ECG) markers reflect the underlying arrhythmic substrate is unknown.MethodsWe analysed how ECG metrics reflect the fibrillatory dynamics of electrical excitation and ischaemic substrate. For this, we developed a human-based computational modelling and simulation framework for the quantification of ECG metrics, namely, frequency, slope, and amplitude spectrum area (AMSA) during VF in acute ischaemia for several electrode configurations. Simulations reproduced experimental and clinical findings in 21 scenarios presenting variability in the location and transmural extent of regional ischaemia, and severity of ischaemia in the remote myocardium secondary to VF.ResultsRegional acute myocardial ischaemia facilitated re-entries, potentially breaking up into VF. Ischaemia in the remote myocardium modulated fibrillation dynamics. Cases presenting a mildly ischaemic remote myocardium yielded sustained VF, enabled by the high proliferation of phase singularities (PS, 11–22) causing remarkably disorganised activation patterns. Conversely, global acute ischaemia induced stable rotors (3–12 PS). Changes in frequency and morphology of the ECG during VF reproduced clinical findings but did not show a direct correlation with the underlying wave dynamics. AMSA allowed the precise stratification of VF according to ischaemic severity in the remote myocardium (healthy: 23.62–24.45 mV Hz; mild ischaemia: 10.58–21.47 mV Hz; moderate ischaemia: 4.82–11.12 mV Hz). Within the context of clinical reference values, apex-anterior and apex-posterior electrode configurations were the most discriminatory in stratifying VF based on the underlying ischaemic substrate.ConclusionThis in silico study provides further insights into non-invasive patient-specific strategies for assessing acute ventricular arrhythmias. The use of reliable ECG markers to characterise VF is critical for developing tailored resuscitation strategies.
format Article
id doaj-art-559a0f8e3fd64f069b2a107f2c0de763
institution Kabale University
issn 2297-055X
language English
publishDate 2024-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cardiovascular Medicine
spelling doaj-art-559a0f8e3fd64f069b2a107f2c0de7632024-11-27T06:32:58ZengFrontiers Media S.A.Frontiers in Cardiovascular Medicine2297-055X2024-11-011110.3389/fcvm.2024.14088221408822ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode locationHector Martinez-Navarro0Ambre Bertrand1Ruben Doste2Hannah Smith3Jakub Tomek4Giuseppe Ristagno5Rafael S. Oliveira6Rodrigo Weber dos Santos7Sandeep V. Pandit8Blanca Rodriguez9Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomDepartment of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomDepartment of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomDepartment of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomDepartment of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United KingdomDipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano Statale, Milano, ItalyComputer Science Department, Universidade Federal de São João del Rei, São João del Rei, BrazilDepartamento de Ciência da Computação, Universidade Federal de Juiz de Fora, Juiz de Fora, BrazilScientific Affairs, ZOLL Medical Corporation, Chelmsford, MA, United StatesDepartment of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomBackgroundVentricular fibrillation (VF) is the deadliest arrhythmia, often caused by myocardial ischaemia. VF patients require urgent intervention planned quickly and non-invasively. However, the accuracy with which electrocardiographic (ECG) markers reflect the underlying arrhythmic substrate is unknown.MethodsWe analysed how ECG metrics reflect the fibrillatory dynamics of electrical excitation and ischaemic substrate. For this, we developed a human-based computational modelling and simulation framework for the quantification of ECG metrics, namely, frequency, slope, and amplitude spectrum area (AMSA) during VF in acute ischaemia for several electrode configurations. Simulations reproduced experimental and clinical findings in 21 scenarios presenting variability in the location and transmural extent of regional ischaemia, and severity of ischaemia in the remote myocardium secondary to VF.ResultsRegional acute myocardial ischaemia facilitated re-entries, potentially breaking up into VF. Ischaemia in the remote myocardium modulated fibrillation dynamics. Cases presenting a mildly ischaemic remote myocardium yielded sustained VF, enabled by the high proliferation of phase singularities (PS, 11–22) causing remarkably disorganised activation patterns. Conversely, global acute ischaemia induced stable rotors (3–12 PS). Changes in frequency and morphology of the ECG during VF reproduced clinical findings but did not show a direct correlation with the underlying wave dynamics. AMSA allowed the precise stratification of VF according to ischaemic severity in the remote myocardium (healthy: 23.62–24.45 mV Hz; mild ischaemia: 10.58–21.47 mV Hz; moderate ischaemia: 4.82–11.12 mV Hz). Within the context of clinical reference values, apex-anterior and apex-posterior electrode configurations were the most discriminatory in stratifying VF based on the underlying ischaemic substrate.ConclusionThis in silico study provides further insights into non-invasive patient-specific strategies for assessing acute ventricular arrhythmias. The use of reliable ECG markers to characterise VF is critical for developing tailored resuscitation strategies.https://www.frontiersin.org/articles/10.3389/fcvm.2024.1408822/fullcardiac electrophysiologymodelling and simulationventricular fibrillationmyocardial ischaemiaarrhythmiaelectrocardiogram
spellingShingle Hector Martinez-Navarro
Ambre Bertrand
Ruben Doste
Hannah Smith
Jakub Tomek
Giuseppe Ristagno
Rafael S. Oliveira
Rodrigo Weber dos Santos
Sandeep V. Pandit
Blanca Rodriguez
ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location
Frontiers in Cardiovascular Medicine
cardiac electrophysiology
modelling and simulation
ventricular fibrillation
myocardial ischaemia
arrhythmia
electrocardiogram
title ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location
title_full ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location
title_fullStr ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location
title_full_unstemmed ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location
title_short ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location
title_sort ecg analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location
topic cardiac electrophysiology
modelling and simulation
ventricular fibrillation
myocardial ischaemia
arrhythmia
electrocardiogram
url https://www.frontiersin.org/articles/10.3389/fcvm.2024.1408822/full
work_keys_str_mv AT hectormartineznavarro ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation
AT ambrebertrand ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation
AT rubendoste ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation
AT hannahsmith ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation
AT jakubtomek ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation
AT giusepperistagno ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation
AT rafaelsoliveira ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation
AT rodrigoweberdossantos ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation
AT sandeepvpandit ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation
AT blancarodriguez ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation