ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location
BackgroundVentricular fibrillation (VF) is the deadliest arrhythmia, often caused by myocardial ischaemia. VF patients require urgent intervention planned quickly and non-invasively. However, the accuracy with which electrocardiographic (ECG) markers reflect the underlying arrhythmic substrate is un...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2024-11-01
|
| Series: | Frontiers in Cardiovascular Medicine |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fcvm.2024.1408822/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1846151684226547712 |
|---|---|
| author | Hector Martinez-Navarro Ambre Bertrand Ruben Doste Hannah Smith Jakub Tomek Giuseppe Ristagno Rafael S. Oliveira Rodrigo Weber dos Santos Sandeep V. Pandit Blanca Rodriguez |
| author_facet | Hector Martinez-Navarro Ambre Bertrand Ruben Doste Hannah Smith Jakub Tomek Giuseppe Ristagno Rafael S. Oliveira Rodrigo Weber dos Santos Sandeep V. Pandit Blanca Rodriguez |
| author_sort | Hector Martinez-Navarro |
| collection | DOAJ |
| description | BackgroundVentricular fibrillation (VF) is the deadliest arrhythmia, often caused by myocardial ischaemia. VF patients require urgent intervention planned quickly and non-invasively. However, the accuracy with which electrocardiographic (ECG) markers reflect the underlying arrhythmic substrate is unknown.MethodsWe analysed how ECG metrics reflect the fibrillatory dynamics of electrical excitation and ischaemic substrate. For this, we developed a human-based computational modelling and simulation framework for the quantification of ECG metrics, namely, frequency, slope, and amplitude spectrum area (AMSA) during VF in acute ischaemia for several electrode configurations. Simulations reproduced experimental and clinical findings in 21 scenarios presenting variability in the location and transmural extent of regional ischaemia, and severity of ischaemia in the remote myocardium secondary to VF.ResultsRegional acute myocardial ischaemia facilitated re-entries, potentially breaking up into VF. Ischaemia in the remote myocardium modulated fibrillation dynamics. Cases presenting a mildly ischaemic remote myocardium yielded sustained VF, enabled by the high proliferation of phase singularities (PS, 11–22) causing remarkably disorganised activation patterns. Conversely, global acute ischaemia induced stable rotors (3–12 PS). Changes in frequency and morphology of the ECG during VF reproduced clinical findings but did not show a direct correlation with the underlying wave dynamics. AMSA allowed the precise stratification of VF according to ischaemic severity in the remote myocardium (healthy: 23.62–24.45 mV Hz; mild ischaemia: 10.58–21.47 mV Hz; moderate ischaemia: 4.82–11.12 mV Hz). Within the context of clinical reference values, apex-anterior and apex-posterior electrode configurations were the most discriminatory in stratifying VF based on the underlying ischaemic substrate.ConclusionThis in silico study provides further insights into non-invasive patient-specific strategies for assessing acute ventricular arrhythmias. The use of reliable ECG markers to characterise VF is critical for developing tailored resuscitation strategies. |
| format | Article |
| id | doaj-art-559a0f8e3fd64f069b2a107f2c0de763 |
| institution | Kabale University |
| issn | 2297-055X |
| language | English |
| publishDate | 2024-11-01 |
| publisher | Frontiers Media S.A. |
| record_format | Article |
| series | Frontiers in Cardiovascular Medicine |
| spelling | doaj-art-559a0f8e3fd64f069b2a107f2c0de7632024-11-27T06:32:58ZengFrontiers Media S.A.Frontiers in Cardiovascular Medicine2297-055X2024-11-011110.3389/fcvm.2024.14088221408822ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode locationHector Martinez-Navarro0Ambre Bertrand1Ruben Doste2Hannah Smith3Jakub Tomek4Giuseppe Ristagno5Rafael S. Oliveira6Rodrigo Weber dos Santos7Sandeep V. Pandit8Blanca Rodriguez9Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomDepartment of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomDepartment of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomDepartment of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomDepartment of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United KingdomDipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano Statale, Milano, ItalyComputer Science Department, Universidade Federal de São João del Rei, São João del Rei, BrazilDepartamento de Ciência da Computação, Universidade Federal de Juiz de Fora, Juiz de Fora, BrazilScientific Affairs, ZOLL Medical Corporation, Chelmsford, MA, United StatesDepartment of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United KingdomBackgroundVentricular fibrillation (VF) is the deadliest arrhythmia, often caused by myocardial ischaemia. VF patients require urgent intervention planned quickly and non-invasively. However, the accuracy with which electrocardiographic (ECG) markers reflect the underlying arrhythmic substrate is unknown.MethodsWe analysed how ECG metrics reflect the fibrillatory dynamics of electrical excitation and ischaemic substrate. For this, we developed a human-based computational modelling and simulation framework for the quantification of ECG metrics, namely, frequency, slope, and amplitude spectrum area (AMSA) during VF in acute ischaemia for several electrode configurations. Simulations reproduced experimental and clinical findings in 21 scenarios presenting variability in the location and transmural extent of regional ischaemia, and severity of ischaemia in the remote myocardium secondary to VF.ResultsRegional acute myocardial ischaemia facilitated re-entries, potentially breaking up into VF. Ischaemia in the remote myocardium modulated fibrillation dynamics. Cases presenting a mildly ischaemic remote myocardium yielded sustained VF, enabled by the high proliferation of phase singularities (PS, 11–22) causing remarkably disorganised activation patterns. Conversely, global acute ischaemia induced stable rotors (3–12 PS). Changes in frequency and morphology of the ECG during VF reproduced clinical findings but did not show a direct correlation with the underlying wave dynamics. AMSA allowed the precise stratification of VF according to ischaemic severity in the remote myocardium (healthy: 23.62–24.45 mV Hz; mild ischaemia: 10.58–21.47 mV Hz; moderate ischaemia: 4.82–11.12 mV Hz). Within the context of clinical reference values, apex-anterior and apex-posterior electrode configurations were the most discriminatory in stratifying VF based on the underlying ischaemic substrate.ConclusionThis in silico study provides further insights into non-invasive patient-specific strategies for assessing acute ventricular arrhythmias. The use of reliable ECG markers to characterise VF is critical for developing tailored resuscitation strategies.https://www.frontiersin.org/articles/10.3389/fcvm.2024.1408822/fullcardiac electrophysiologymodelling and simulationventricular fibrillationmyocardial ischaemiaarrhythmiaelectrocardiogram |
| spellingShingle | Hector Martinez-Navarro Ambre Bertrand Ruben Doste Hannah Smith Jakub Tomek Giuseppe Ristagno Rafael S. Oliveira Rodrigo Weber dos Santos Sandeep V. Pandit Blanca Rodriguez ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location Frontiers in Cardiovascular Medicine cardiac electrophysiology modelling and simulation ventricular fibrillation myocardial ischaemia arrhythmia electrocardiogram |
| title | ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location |
| title_full | ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location |
| title_fullStr | ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location |
| title_full_unstemmed | ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location |
| title_short | ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location |
| title_sort | ecg analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location |
| topic | cardiac electrophysiology modelling and simulation ventricular fibrillation myocardial ischaemia arrhythmia electrocardiogram |
| url | https://www.frontiersin.org/articles/10.3389/fcvm.2024.1408822/full |
| work_keys_str_mv | AT hectormartineznavarro ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation AT ambrebertrand ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation AT rubendoste ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation AT hannahsmith ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation AT jakubtomek ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation AT giusepperistagno ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation AT rafaelsoliveira ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation AT rodrigoweberdossantos ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation AT sandeepvpandit ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation AT blancarodriguez ecganalysisofventricularfibrillationdynamicsreflectsischaemicprogressionsubjecttovariabilityinpatientanatomyandelectrodelocation |