Catalytic oxidation upcycling of polyethylene terephthalate to commodity carboxylic acids
Abstract Catalytic upcycling of polyethylene terephthalate (PET) into high-value oxygenated products is a fascinating process, yet it remains challenging. Here, we present a one-step tandem strategy to realize the thermal catalytic oxidation upcycling of PET to terephthalic acid (TPA) and high-value...
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-12-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-54822-w |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Catalytic upcycling of polyethylene terephthalate (PET) into high-value oxygenated products is a fascinating process, yet it remains challenging. Here, we present a one-step tandem strategy to realize the thermal catalytic oxidation upcycling of PET to terephthalic acid (TPA) and high-value glycolic acid (GA) instead of ethylene glycol (EG). By using the Au/NiO with rich oxygen vacancies as catalyst, we successfully accelerate the hydrolysis of PET, accompanied by obtaining 99% TPA yield and 87.6% GA yield. The results reveal that the oxygen vacancies in NiO (NiO-Ov) support tend to adsorb hydrolysis product TPA, preferentially ensuring the strong adsorption of EG at the Au-NiO interface. Moreover, during the EG oxidation process, the Au-NiO interface, composed of two types of structures, quasi “AuNi alloy” and NiO-Ov, simultaneously promote the C-H bond activation, where Ni in “AuNi alloy” exhibits an oxytropism effect to anchor the C = O bond of the intermediate, while the residual O in NiO-Ov pillages the H in the C-H bond. Such Au/NiO catalyst is further extended to promote the thermal catalytic oxidation upcycling of other polyethylene glycol esters to GA with excellent catalytic performance. |
---|---|
ISSN: | 2041-1723 |