Network slicing resource allocation strategy based on joint optimization
To improve network resource utilization that was decreased by different applications with different requirements in 5G networks, a network slicing resource allocation strategy based on joint optimization was proposed, which was utilized to maximize both network resource utilization and network reven...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Editorial Department of Journal on Communications
2023-05-01
|
Series: | Tongxin xuebao |
Subjects: | |
Online Access: | http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2023089/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To improve network resource utilization that was decreased by different applications with different requirements in 5G networks, a network slicing resource allocation strategy based on joint optimization was proposed, which was utilized to maximize both network resource utilization and network revenue by comprehensively considering in tra-slice and inter-slice resource schedule.Firstly, the user’s average satisfaction function was defined in the inter-slicing resource allocation problem.Furthermore, in terms of the number of users, slicing schedule delay and priority, a proportional fair resource allocation algorithm based on quality of service (QoS) was proposed, which was employed to achieve the best tradeoff between fairness and the users’ requirements among slices.Secondly, after two functions (service degradation and resource migration) were introduced in the inter-slice resource schedule problem, two price models were established for internal access users and external access users respectively, where congestion and non-congestion conditions were analyzed.According to the proposed price models, a Stackelberg game between the base station and users was constructed, and a global search algorithm with low complexity was leveraged to obtain the best response of the game, where the best tradeoff between the base station revenue and user utility was obtained.Simulation results show that the proposed strategy can effectively improve resource utilization and network revenue while reducing network congestion.Therefore, it can better realize fairness in resource allocation. |
---|---|
ISSN: | 1000-436X |