Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$
We investigate the following logarithmic Kirchhoff-type equation: \begin{equation*} \left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}+V(x)u^{2}dx\right)[-\Delta u+V(x)u]=|u|^{p-2}u\ln |u|,\qquad x\in\mathbb{R}^{3}, \end{equation*} where $a,b>0$ are constants, $4<p<2^{*}=6$. Under some appropria...
Saved in:
Main Authors: | Wei-Long Yang, Jia-Feng Liao |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2024-08-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11094 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Existence and Multiplicity Results for a Class of Kirchhoff-Type Equations
by: Mohammad Reza Heidari Tavani
Published: (2024-07-01) -
Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$
by: Linlin Wang, et al.
Published: (2024-01-01) -
Multiplicity Results of Solutions to the Fractional <i>p</i>-Laplacian Problems of the Kirchhoff–Schrödinger–Hardy Type
by: Yun-Ho Kim
Published: (2024-12-01) -
Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity
by: Bidi Younes, et al.
Published: (2024-09-01) -
Finite and Infinte Time Blow Up of Solutions to Wave Equations with Combined Logarithmic and Power-Type Nonlinearities
by: Milena Dimova, et al.
Published: (2025-01-01)